一、软弱破碎岩石巷道施工技术(论文文献综述)
朱光轩[1](2021)在《TBM穿越破碎带刀盘卡机机理与工程应用》文中研究指明全断面硬岩隧道掘进机(TBM)因其安全、高效、绿色环保的施工特点,在我国深长隧道工程建设中得到了广泛应用。TBM隧道掘进施工中不可避免地需要频繁穿越断层破碎带等富水软弱不良地质体,由于其开挖支护方式不够灵活,易引发开挖面围岩失稳坍塌,受坍塌围岩挤压作用,极易导致TBM刀盘被卡,损失严重。本文围绕“围岩-TBM刀盘相互作用机制和刀盘卡机机理”这一关键科学问题,综合采用理论分析、模型试验、数值模拟和现场试验等方法,揭示了刀盘卡机致灾演变全过程,分析了多因素对卡机影响机制,揭示了机岩相互作用规律,建立了刀盘卡机灾害判识方法,提出了卡机综合防控技术,并在依托工程进行了应用验证。本文主要工作及创新成果如下:(1)研发了 TBM破碎带掘进模型试验系统。基于“机器-土体”系统相似原理,以DSUC型双护盾TBM为原型机,自主研发了 TBM缩尺模型和破碎带掘进模型试验系统,突破了 TBM小型化过程中掘进、排渣、监测和自动控制一体化的试验技术难题,实现了 TBM过破碎带的全过程相似模拟。以青岛地铁2号线徐麦区间隧道TBM过破碎带刀盘卡机为模拟工况,对卡机事件进行了真实还原,验证了试验系统的可靠性和准确性;揭示了卡机过程中刀盘扭矩、推力、排渣率、刀盘土压力、护盾摩擦力以及围岩应力位移场等多元信息演化规律。(2)揭示了多因素对TBM过破碎带刀盘卡机影响机制。基于所研发的TBM过破碎带相似模拟系统,系统研究了破碎带宽度,隧道埋深,充填介质摩擦角,TBM推进速度和刀盘转速等参数对TBM负载及围岩应力位移场影响机制。分析总结了 TBM掘进隧道破碎带识别方法以及典型刀盘卡机灾害演化规律。(3)分析了 TBM与围岩相互作用的影响规律。以有限元软件ABAQUS为模拟平台,实现了 TBM过破碎带连续掘进全过程模拟,分析了开挖面前方地层土拱效应,以及地层应力位移场以及TBM负载随开挖过程的演化规律。(4)建立了 TBM刀盘卡机理论判据。基于模型试验和数值模拟结果,分析总结了 TBM过破碎带开挖面前方地层松动滑移模式,考虑土拱效应,提出了刀盘前方松散塌落区“组合拱-截锥体”力学模型,建立了开挖面支护力计算方法。在此基础上,分析了刀盘扭矩形成机制,提出了开挖面极限状态下刀盘扭矩计算方法以及刀盘卡机理论判据。(5)提出了刀盘卡机综合防控技术。基于研究成果,提出了 TBM过破碎带施工刀盘卡机灾害判识方法以及卡机脱困治理方法,依托吉林引松工程TBM卡机脱困案例,对研究成果进行了成功应用。
黄庆显[2](2021)在《平顶山矿区典型深井巷道围岩内外承载协同控制研究》文中研究指明深部煤岩体的“三高两强”赋存环境给矿井巷道支护带来了严重不利影响,是业界一直关注的热点问题之一。作为我国典型深部矿区之一,平顶山矿区主力矿井开采深度已不同程度超过800 m,现有实践表明,深部巷道围岩松软破碎,具有变形大、流变性强等特点,采用浅部巷道的支护技术,巷道围岩难以保持长期稳定。因此,系统深化平顶山矿区深井巷道围岩控制技术的研究具有重要的理论价值和实际意义。本文综合采用现场实测、理论计算、数值模拟和工业性试验等方法,以提高围岩自承能力为核心,对围岩协同控制机理和关键技术进行了深入研究,可为深井巷道支护方式选择和技术参数设计提供参考和借鉴。主要研究成果如下:(1)明确了平顶山矿区主力生产矿井构造应力显着的地应力分布特征,掌握了深井巷道围岩结构特点和典型物理力学特性。结合围岩蠕变试验结果,推演了围岩蠕变等围压三维粘弹塑性本构模型并在多个矿井进行了普适性分析。原位实测分析了巷道围岩强度、内聚力和弹性模量衰减的时空演化特征,建立了围岩强度衰减模型,研究了侧压系数变化对巷道围岩应力演化及变形的影响,掌握了深井巷道全断面持续收缩、底鼓量和两帮移近量明显大于顶板下沉量的总体破坏特征,明确了巷道围岩主要承载区的位置(2.4-3.0m)与力学特性。(2)以深井巷道围岩内外承载结构协同承载、支护(力)协同作用、“支护—围岩”协同控制(“三协同”)为切入点,分别建立了围岩内外承载结构、支护(力)间协同作用和“支护—围岩”(粘)弹塑性“三区两圈”(弹性区-塑性区-破碎区,内承载圈-外承载圈)力学模型,研究了深井巷道内外承载结构协同作用机制及主要影响因素,明确了不同支护强度下深井巷道变形随支护时间的演变规律,揭示了平顶山矿区深井巷道围岩内外承载“三协同”控制机理,确定了协同支护合理的支护强度与时机。(3)根据平顶山矿区深井巷道变形破坏的主要影响因素,将平顶山矿区深井巷道分为高应力型、低强度型和复合型三类,明确了“协同支护构建承载结构,结构协同承载控制围岩变形”的控制思路,明确了以高强支护强化外承载结构、注浆改性内承载结构和卸压改善应力为主要途径的深井巷道承载圈层“强外稳内”控制对策。提出了以双层喷浆、锚杆-锚索(束)注浆、锚索棚支护、底板卸压为核心的四位一体关键支护技术,研发了配套材料及设备,探索完善了相应的注浆工艺措施,构建了协同作用效率评价方法,形成了深井巷道围岩内外协同承载控制技术体系。(4)结合热轧厚壁中空注浆锚杆、锚索和水泥注浆添加剂等新型材料大范围强力锚固的特点,针对高应力低强度复合型、低强度型、高应力型巷道围岩控制需求,基于深井巷道围岩内外承载协同控制技术体系确定了三类巷道合理的支护方式、参数及支护时机。实测掌握了矿区典型深井巷道围岩变形与破碎破裂区发育特征,建立了巷道表面围岩变形量和协同作用效率间的关系,提出了基于巷道掘前支护效果预估和掘后围岩变形预警的协同效率评价方法并指导巷道支护。上述研究成果在平顶山矿区一矿、四矿的典型深井巷道进行了工业性试验,结果表明,相关技术能有效提高内外承载结构的承载性能,三类巷道内外承载结构的协同作用效率分别达到86.33%、80.8%、86.05%,显着控制了围岩变形。该论文有图142幅,表20个,参考文献182篇。
王亚[3](2020)在《深井高应力软岩硐室流变破坏特征及控制研究》文中提出平顶山矿区作为典型的深部开采矿区,其开采深度已超过800 m,深部煤岩体的“三高”赋存环境给矿井巷道的支护带来严重不利影响。本文针对平煤某矿深部高应力软岩绞车房硐室,综合运用了现场实测、实验室试验、理论分析、数值模拟、工业性试验等方法对硐室的流变破坏特征、应力演化特征及围岩承载特性进行了深入研究,对硐室进行了有效修复,主要研究成果如下:(1)掌握了硐室地应力特点、围岩结构特点、物理力学参数及蠕变变形特征。硐室主要受水平地应力作用,水平地应力均值在24 MPa左右,侧压系数为1.22;硐室围岩松动圈发育深度为3.5 m左右,煤岩体的力学属性差,围岩破碎程度较高。明确了围岩岩样在5 MPa、10 MPa、15 MPa三种不同围压作用下的蠕变变形特征,随着轴向应力水平的提高,围岩蠕变过程中的稳态蠕变过程较短,很容易进入到加速蠕变破坏阶段;随着围压增大,岩样破坏时长和蠕变破坏强度增加。(2)改进了岩石流变本构模型,得出了影响围岩流变破坏特征的关键影响因素为应力差σ1-σ3、弹性模量E0、粘滞系数η2、η3。建立了硐室数值运算模型,明确了硐室围岩变形破坏和应力演化特征,硐室呈全断面持续大变形状态,在硐室顶底角及硐室大小断面连接处存在较高程度的应力集中,且随着时间推移,应力集中系数不断增高。深入分析了绞车基础的变形破坏特征,其破坏原因为基础两端受拉中间受压造成的受力不平衡,硐室围岩和底板的最大破坏深度在12 m左右。(3)明确了硐室围岩稳定的主要影响因素,建立了巷道内外承载结构力学模型,分析了围岩承载机理,研究了不同支护技术(架棚支护、底板卸压、锚索支护与注浆加固)对围岩承载结构及流变变形的控制效果,提出了“让、抗、置、注”围岩控制对策,对硐室内外承载结构进行优化,确定了围岩控制方案为“锚杆+金属网+喷浆+高强预应力锚索+全断面注浆+底板卸压”。(4)对提出的硐室围岩控制方案进行数值模拟验证,并开展工业性试验,检验了支护方式和支护参数的合理性。围岩变形监测表明,对硐室进行修复后,有效控制了硐室的流变变形,围岩顶底板及两帮变形量均控制在10 mm以内,保障了绞车房硐室的稳定性。研究成果可为深部软岩硐室的支护、围岩控制提供参考借鉴。该论文有图73幅,表17个,参考文献124篇。
卢建宇[4](2020)在《上海庙矿区弱胶结软岩巷道底鼓破坏机制与支护技术研究》文中认为软岩底鼓治理一段时间以来都是矿井安全高效开采中重点攻关的难题之一,且随着中东部矿区浅埋资源的枯竭,煤炭开采的重心有向陕、蒙地区转移的趋势,西部矿区的开发将成为新的发展方向,现阶段西部矿区开采的煤层大多赋存于成岩年代较晚的中生代地层,围岩胶结程度差、变形强烈、遇水软化泥化、且呈持续变形状态,底鼓问题尤为突出。大量软岩巷道因对巷道底鼓机理认识上仍存在一定模糊性,导致底鼓控制措施的盲目性和对经验的依赖性,导致底鼓控制失败的事例屡见不鲜,因此研究与发展特定地质条件下巷道底鼓力学机理及对应的底鼓控制技术具有广泛应用价值和重要的现实意义。本文针对榆树井煤矿-400m水平13803轨道顺槽剧烈的复合型底鼓,在综合分析国内外底鼓机理及控制技术的基础上,采用现场矿压观测、实验室试验、理论分析及FLAC3D模拟等方法,对巷道底鼓产生的影响因素、力学作用机制及与之相适应的底鼓控制技术等进行了深入研究,主要研究内容及成果如下:(1)通过对研究巷道围岩取样进行矿物成分分析及物理力学试验,得出巷道顶底板围岩的主要组分为高岭石伊利石,底板围岩的单轴抗压强度及抗拉强度分别为3.94MPa和1.21MPa,平均软化系数保持在0.09~0.12之间,巷道顶底板岩层整体的强度较低,承压能力弱,且水的软化效应显着,属于典型的弱胶结软岩巷道;通过对底板岩层固有属性及底鼓力源的综合分析,得出该软岩巷道底鼓是巷道围岩属性、煤柱支承压力、矿井水和不当支护形式及参数耦合作用的结果,确定巷道的底鼓类型为浅部软弱岩层的挤压流动与深部厚层状中粒砂岩剪切错动构成的复合型底鼓。(2)综合13803轨道顺槽围岩应力作用模式、底板岩层运动及宏观变形特征的基础上,结合朗肯压力理论及普氏拱理论构建了软岩巷道剪切错动型底鼓力学模型,推导出了底板零位移点的极限深度y0及巷道底鼓压力P0的计算方程;并从力学角度对13803轨道顺槽的底鼓问题进行分析,确定了底板零位移点的极限深度y0为1.7m;13803轨道顺槽底鼓压力P0为33.6kN,为底鼓控制技术的提出提供了理论依据。(3)基于上述软岩回采巷道底鼓类型及底板变形力学机制对底鼓控制措施所提供的理论依据,提出了一种适用于该型底鼓变形力学机制的软岩巷道底板支护技术,并结合理论分析与FLAC3D数值计算的方法,对其各部分在底鼓控制过程中的作用机制进行分析,揭示了其“控底-助帮”的底鼓控制机理;优选出了该底鼓控制技术井下施工过程中的优化参数,为下一步工业性试验提供依据。(4)在榆树井煤矿13803轨道顺槽进行了新型反底拱底鼓控制技术的工业性试验,并对试验段巷道的围岩运动规律进行了监测分析,试验段巷道最终的平均顶板下沉量为104.1mm,两帮收敛量为151.5mm,最大底鼓量为71.5mm,试验方案有效维护了巷道在服务期间的稳定性,取得了良好的工程效果。
刘泽[5](2020)在《弱胶结粉砂岩巷道顶板围岩力学特性及稳定性控制》文中提出本文以广西百色右江矿务局林场煤矿3402工作面回风巷巷道为工程背景,围绕弱胶结粉砂岩巷道顶板支护与稳定性控制问题,采用现场调研、实验室试验、理论分析、数值模拟以及现场工程应用的综合研究方法,深入研究了弱胶结粉砂岩巷道围岩力学特性及稳定性控制,主要形成了以下研究成果:(1)通过现场调研,掌握了矿井地质概况、巷道断面参数、巷道围岩变形情况以及原始支护方案参数等,并取顶板部分岩样,根据巷道变形破坏情况以及微观结构和物化成分分析,总结了巷道围岩变形破坏机理。(2)针对3402工作面回风巷顶板特性进行了岩石力学单轴压缩试验和弱胶结试验,对岩块进行了强度以及遇水崩解试验,结果表明:巷道顶板松散软弱、强度低、自稳能力差且遇水易软化等,原有锚网索支护效果不佳。(3)根据弱胶结粉砂岩巷道围岩变形特征及失稳原因,以及力学特性试验结果提出合理的巷道围岩稳定性控制对策,再综合矿上实际经济和现场施工条件,设计了“超前注浆+顶板锚杆+锚索”组合支护方案。(4)对巷道围岩失稳机理进行结构力学分析,采用普氏拱理论及简支梁和超静定力学关系,通过力学分析得出围岩应力以及发生剪切滑移破坏的力学原理。根据现场地质条件使用Flac3D数值模拟软件对弱胶结粉砂岩巷道顶板注浆前后作用效果,并且对提出补强优化支护方案进行模拟演化对比,结果表明:对破碎围岩顶板注浆加固后,采用锚杆+锚索联合支护的优化方案效果更佳。(5)基于林场煤矿弱胶结巷道围岩失稳特征,提出合理的稳定性控制原则,并从设计的几种补强支护方案中选出最优支护优化方案应用于现场,以便达到预期目的,实现弱胶结粉砂岩巷道围岩的长期稳定。
罗毅[6](2020)在《复杂条件下软弱破碎带围岩稳定性控制技术研究》文中提出“一带一路”战略体系促进我国高速公路建设蓬勃发展。近年来,我国高速公路发展模式从浅埋单一转为深埋复杂,建设地点从一马平川到穿山越岭,所遇工程地质也从泾渭分明变为错综复杂。在进行深埋复杂隧道建设过程中,地质构造带、高地应力、节理裂隙软弱破碎带等复杂地质问题日益突出。本文以遵义市正习高速公路软弱破碎带控制性工程—桃子娅隧道第七合同段为研究对象,将室内试验、理论分析及数值模拟等主要研究方法相结合,对桃子娅隧道软弱破碎带围岩稳定性控制技术进行深入、系统的研究,并形成如下主要成果:(1)确定了隧道第七合同段整体为Ⅳ~Ⅴ级围岩,软弱破碎高地应力段为Ⅴb级加强型围岩;找出了岩土体结构状态、岩体工程性质、地下水、隧道形状和尺寸、支护方法和时间、施工方法及隧道埋深等对隧道围岩稳定性影响较大的因素。(2)采用MTS815电液伺服全应力岩石试验机对岩样开展室内巴西劈裂、常规单轴和三轴加载,获得了软弱破碎带围岩的全应力-应变曲线;通过三轴卸荷试验,模拟了穿越破碎里程段围岩在不同初始围压、不同卸荷速率及路径的开挖条件下,对比分析了两个穿越段岩石不同初始围压下的卸荷力学特性及差异性,探究了卸荷路径和卸荷速率对隧道围岩卸荷变形的影响。(3)采用FLAC3D分析软件对桃子娅隧道软弱破碎带的围岩稳定性开展数值模拟分析,确定了桃子娅围岩失稳破坏的主要形式;分析了不同支护工况下隧道围压的竖向与水平位移、最大与最小主应力以及塑性区分布规律,验证了现场监测结论的正确性。(4)掌握了隧道洞周水平收敛值均大于拱顶沉降值的变形规律;制定了桃子娅隧道软弱破碎带围岩施工沉降收敛控制基准表;以控制基准表结合大变形判定等级,判定了隧道里程ZK58+550~ZK58+580段为Ⅱ级位移严重沉降及收敛大变形段,判定了其余里程段以Ⅰ级级轻微沉降及收敛大变形段;根据隧道围岩大变形等级判定结果,给出了桃子娅隧道软弱破碎段围岩支护参数建议表。本文以正习高速第七合同段桃子娅隧道穿越软弱破碎带围岩稳定性控制技术为出发点开展研究,理论结合实际,其研究思路、技术路线及研究结果,能为类似工程有一定的借鉴和参考意义。
孙元田[7](2020)在《深部松散煤体巷道流变机理研究及控制对策》文中提出随着煤炭资源开采深度的增加,大量深部煤层巷道变形的时间效应显现加剧。对于围岩强度极低的松散煤层巷道,流变大变形现象十分普遍。鉴于此,本文紧紧围绕松散煤体巷道流变问题,采用人工智能、室内实验、理论分析、工程调研、数值计算及现场试验相结合的研究方法,基于煤岩参数反演模型,实验室构建了等效松散煤体试样,揭示了松散煤体的流变特性,建立了符合该类煤体的流变模型,反演了巷道煤体流变参数并揭示了巷道流变机理,提出了旋喷注浆加固松散煤体的控制对策并试验其可行性,探索了旋喷加固技术抑制巷道流变机理,为研究与治理松散煤体巷道提供了新的思路。本文的主要研究内容和成果如下:(1)搭建了煤岩体参数反演的算法模型。在分析参数的反演必要性前提下,采用人工智能手段对本文松散煤体研究涉及的两类物理力学参数即“构建参数”和“流变参数”进行反演模型搭建。将机器学习的支持向量机算法和高效寻优的生物启发式天牛须算法有机结合起来,进一步的建立起基于天牛须搜索的进化支持向量机参数反演模型(BAS-ESVM),确定了该模型反演实现的主要步骤。其中天牛须算法不仅对支持向量机的参数(核参数和罚参数)进行调优形成进化支持向量机(ESVM),还对待反演参数进行寻优输出。利用该模型对室内煤体构建的参数和巷道煤体的流变参数进行了精确反演。(2)提出了室内构建煤试件等效于现场松散煤体的方法。鉴于典型的松散煤层实际赋存状态,常规手段难以对其开展煤岩物理力学试验。该法以松散煤体坚固性为纽带,旨在将室内的成型煤体的孔隙率和强度与现场煤体孔隙率和强度等效。实验室测定了现场煤体的孔隙率(9.8%)和坚固性系数的反算强度(2.5MPa),并提出了成型煤体的孔隙率测定方法。理论分析确定了“成型压力、成型时间和成型水分(含水率)”为煤体成型过程中的关键影响参数,确定了煤体成型工艺并分析了成型机理及影响成型效果的因素,得到了煤体成型过程中的三阶段曲线即“初始压密变形、塑性变形及弹性变形阶段”。通过试验得到成型煤体的孔隙率和强度样本数据,揭示了成型煤体破坏的五阶段曲线即“孔隙裂隙压密、弹性变形、稳定破裂、加速破坏和峰后破坏阶段”。基于“BAS-ESVM”模型反演得到了现场原煤孔隙率和强度下的实验室型煤体构建参数即成型压力23.7MPa,成型时间33.5 min,含水率4.82%。按照该参数成功建立起试验煤体,成型煤体测试强度为2.52 MPa,孔隙率为10%,与原煤高度接近,验证了该模型和参数的合理准确性。(3)揭示了松散煤体流变特性并建立了相适应的流变模型。基于已构建的高度等效现场的松散煤体试样,采用分级加载方法,测得其单轴流变全过程蠕变曲线,揭示了松散煤体的流变变形特性即松散煤体存在“瞬时变形、减速蠕变、等速蠕变及加速蠕变阶段,卸载后存在残余变形”。得到了试样轴向四阶段应力应变规律即“孔隙裂隙压密阶段、线性变形阶段、裂隙孔隙发育阶段、加速破坏阶段”,分析了蠕变煤体受长时蠕变损伤下的等时应力应变曲线和瞬时加载变形模量规律。在松散煤体流变元件模型选取原则指导下,提出了适合松散煤体流变特征的改进型CVISC流变模型,推导了相关蠕变方程及其差分形式。提出了对添加的粘性单元参数计算方法,对松散煤体的流变参数进行了辨识,后经数值模型分析,验证了所提出模型的合理与正确性。(4)反演了深部巷道松散煤体流变参数并揭示了巷道流变机理。基于一个具有典型流变性质的松散煤层巷道工程案例,分析了其流变规律即该松散煤巷具有“前期减速大流变和后期等速大流变”特征,确定了帮部软弱松散煤体长时流变是巷道失稳破坏的关键因素。理论分析选取了适合松散煤体的流变模型及相关流变参数的取值范围,通过正交流变参数组合设计,并经三维巷道数值模拟计算,得到含有时间序列的巷道位移。基于现场流变位移数据,通过“BAS-ESVM”模型反演得到了实测变形下的巷道煤体流变参数,经正算验证了所反演的流变参数及整体模型的建立是合适与正确的。进一步,通过对该流变巷道围岩水平与垂直位移、最大主应力与最小主应力、塑性区扩展随时间的演化规律分析,揭示了松散煤体巷道的不稳定变形时间长,煤体内高应力积聚,塑性区扩展范围远超支护范围等破坏机理。(5)提出了高压旋喷加固流变巷道的技术对策并试验其对松散煤体的扩孔成桩效果。理论分析了控制流变巷道的根本是提高松散煤体的自身性质,探索性的提出通过高压旋喷技术深度改性松散煤体,从而抑制巷道流变。深入分析了高压旋喷的“剪切、拉伸及内损伤”破煤机理,讨论了高压射流在煤体中扩孔范围与关键影响因素,分析了水泥浆旋喷成桩作用与改性固结煤体机理。讨论了旋喷技术在深部松软煤层适用的可行性,计算选取了旋喷相关设备,分析了射流流量及压力对煤体作用,并在地面预先验证了设备和参数设置合理性。确定了两套旋喷工艺及流程,现场试验结果显示高压旋喷射流技术对坚硬的泥岩体扩孔范围有限,而对松散煤体扩孔成桩效果较好,尺寸在400 mm~500 mm左右,满足预加固支护要求,但也仍需优化选取试验地点和部分旋喷参数。(6)探索了旋喷加固控制松散煤巷方案并分析了其抑制流变机理。基于旋喷注浆成型桩体在松散煤层中的存在状态,实验室内构建了旋喷煤浆固结体,理论计算确定了煤与水泥浆液的合理比例为1.3,设计了煤浆混合物并测定了其坍落度。从宏观微观角度试验分析了水泥浆对煤体的改性作用,认为煤浆固结体是介于混凝土和煤体之间的在强度和延展性上具有优异性能的复合材料,试验确定了该材料力学参数的尺寸效应和抗流变的特性。提出了旋喷注浆加固巷道的设计思路、原则和关键技术,建立了以“旋喷改性加固为主体,联合喷射混凝土和U型棚强化”的松散煤层巷道控制方案并确定了相关参数,概括为“浅表改性、预先加固、提高承载、边放边抗、柔中有刚、多重支护”的基本控制思想。建立了含有旋喷加固体的三维数值模型,合理选取了本构模型和相关参数。探索了两种旋喷方案在巷道流变变形抑制、围岩应力优化及塑性区扩展控制上的机理,综合对比分析认为旋喷注浆加固松散煤体技术可以明显降低顶板和帮部变形,最大分别减小69%和78%;减少巷道稳定时间,从60天减少至15天;优化围岩应力,应力集中系数可最大降低35%;大幅度减小围岩塑性区,顶板塑性区范围减小84%,帮部塑性区范围最大降低42%;对松散煤巷流变的研究与治理进行了新的尝试并提供了新的思路。该论文有图130幅,表39个,参考文献282篇。
张超[8](2020)在《平煤一矿高应力软岩巷道底鼓机理及控制技术研究》文中提出高应力软岩巷道底鼓治理,是长期困扰矿井安全生产的难题。本论文以平煤一矿三水平下延-950水平回风大巷为工程背景,根据围岩结构探测,分析了巷道围岩的结构特征和破坏范围;经现场取样测定了底板岩层物理物理力学性质和矿物组分,得到巷道底板为砂质泥岩及膨胀性粘土矿物,揭示巷道底板岩性软弱是易发生底鼓的重要原因;根据地应力测试数据,分析了原岩应力与巷道底鼓的关系;以巷道原有支护体系为研究对象,分析了底板支护强度对底鼓的影响;通过理论计算和经验公式分析了围岩应力、岩石膨胀和塑性变形引起底鼓的过程和造成的底鼓量,并提出了一套解释巷道底鼓的力学模型,从理论上分析了该巷道底鼓发生的机理。在分析总结底鼓的主要影响因素和发生机理的基础上,指出控制该巷道底鼓的途径,利用FLAC数值模拟软件对比分析了原支护方案、底板卸压、底板锚固和底板注浆技术时该巷道的底鼓量,分析了围岩应力分布和塑性区情况,由此提出了锚注加固和底板爆破卸压两种底鼓治理方案,工业性试验结果表明,-950水平回风大巷底鼓控制效果良好,巷道底板可以保证长期稳定。论文研究结果对同类巷道底鼓控制问题提供一定参考。
原凯[9](2020)在《新城金矿-830m中段支护工程设计与施工管理》文中研究指明为了保证井下复杂环境条件下岩体稳定性以及安全高效开采,结合工程管理研究方向,本文围绕新城金矿井下岩体特征、稳定性分析、支护设计与现场施工安全管理等展开。通过现场工程地质调查,重点对巷道围岩的断面、节理空间分布等进行量测,并详细记录粗糙度、蚀变特性、含水情况等,并以地应力测量及变化规律、岩体结构面分析技术、岩石力学和锚杆支护理论为指导,在综合评价岩体质量及分析相关参数规律的前提下,采用工程地质调查、工程类比、理论分析和数值模拟相结合的方法,掌握新城金矿深部中段围岩破坏、甚至垮塌的原因和机理。结合掌握的规律和详细分析,制定切实有效的支护方案,同时优化施工管理,以保证高应力破碎松散岩体中巷道顶板稳定性,为新城金矿深部破碎岩体下巷道安全掘进和维护提供保障,同时也为山东黄金集团其它矿山深部开拓及开采起到参照借鉴作用。
陶文斌[10](2020)在《高应力软岩巷道锚杆支护优化及工程应用研究》文中研究说明安徽省和山东省作为我国重要煤炭能源基地,随着煤矿开采深度不断增大,深井软岩巷道面临高应力环境,巷道存在变形严重、支护困难等问题,造成巷道返修频繁和锚杆失锚安全事故显着增加,严重影响巷道正常施工和威胁人员安全。本文基于安徽省和山东省矿区地应力测试分析结果,明确了安徽和山东矿区地应力场分布规律,以安徽淮南矿区潘三煤矿为例,对潘三煤矿地应力进行实测,并模拟分析在巷道轴向与最大水平主应力方向成不同夹角时巷道围岩应力与锚杆轴力变化规律,发现巷道变形不仅与地应力大小相关,而且还与巷道轴向和最大主应力方向有关,对高应力软岩巷道锚杆支护提出了更高的要求。通过正交试验分析锚杆加固岩体影响因素作用,对锚杆支护工艺进行改进,提出了锚杆锚固优化方案,并将其应用于高应力软岩巷道支护实践中,取得了较好的效果。研究成果可为安徽省和山东省矿区软岩巷道锚杆支护提供借鉴。主要研究成果如下:(1)通过对安徽、山东矿区地应力测试结果分析,发现安徽和山东矿区是以水平应力为主的高地应力矿区。以淮南矿区潘三煤矿为例,采用应力解除法对潘三煤矿地应力进行了现场实测,得到潘三煤矿地应力大小及分布规律,潘三煤矿为典型高地应力矿井,以南北向水平应力为最大主应力,且水平应力与垂直应力差值和最大与最小水平应力差值均较大。现场发现当巷道布置轴向与最大水平主应力方向近似垂直时,巷道变形量急剧增加。(2)对最大水平主应力方向与巷道布置轴向成不同夹角的巷道锚杆锚固支护进行数值模拟研究。当巷道布置轴向与最大水平主应力方向的夹角在0°~30°时,巷道围岩应力较为缓和;当夹角大于30°时,巷道顶部和底板区域应力显着升高并且应力集中程度增大;锚杆自由段轴力呈“一”字状分布,锚杆锚固段轴力呈“乀”字状分布,帮部锚杆轴力随最大水平主应力与巷道轴向所成夹角增大而呈负相关,顶部锚杆轴力随夹角增加呈正相关且增加显着。当夹角大于30°时巷道顶板逐渐转为重点支护区域,应加强锚杆对顶板支护。(3)对于局部变形严重的高应力软岩巷道,采用加长锚固锚杆或全长锚固锚杆支护存在锚杆承载能力低和锚固段受力不均的现象,无法依靠锚杆支护解决巷道大变形的问题。通过设计锚杆拉拔试验正交方案开展锚杆加固岩体影响因素研究,试验结果表明:锚杆失效首先发生在锚固体与试块粘结界面,锚杆拉拔锚固失效经历了弹性-塑性-破坏6个动态阶段,不同锚杆加固岩体影响因素对锚固失效和锚杆极限拉拔力作用不同,其中试块强度和锚杆预应力对提升锚杆极限拉拔力影响显着。(4)基于对锚杆加固岩体影响因素分析,提出了高预应力后张法全长锚固支护工艺,并研发高预应力减摩垫片和高预应力全长锚固锚杆。对高预应力后张法全长锚固支护的受力特征进行了分析和对支护围岩承载能力进行了理论计算,并采用测力锚杆对高预应力后张法全长锚固支护与传统加长锚固支护、全长锚固支护进行了室内和现场试验对比。高预应力后张法全长锚固支护方法具有高预应力支护与全长锚固支护的特点,在全长锚固的基础上使得预应力得以向围岩内传递,增大围岩压应力区范围,形成更有效的锚固围岩承载结构,在现场试验中有效控制了围岩变形;同时高预应力后张法全长锚固支护方法使锚固界面剪应力分布更加平缓,减少应力集中出现,有效避免了脱锚失锚事故发生。(5)对非均匀应力环境中的深埋圆形巷道围岩-锚杆受力力学机制进行了分析,并考虑围岩软化、扩容和锚杆锚固效应影响,推导了不同水平应力下围岩弹塑性区应力、位移表达式以及锚杆轴力和锚固界面剪应力的解析表达式,进而对围岩侧压系数、锚杆预应力、围岩弹性模量和锚杆长度四个影响因素进行分析。侧压系数是影响巷道锚固破碎区形态的主要因素,不同锚固破碎区形态造成巷道不同位置锚杆受力分布不同;通过锚杆支护抑制巷道锚固破碎区变形是控制巷道变形重点,提高锚杆预应力和改善围岩强度可以显着提高锚杆支护质量,只改变锚杆长度对改善支护效果影响很小。(6)根据高地应力软岩巷道地质环境以及现有围岩分类标准,提出了以地应力测量结合围岩分级指标为基础,测力锚杆全程监测为依据,高预应力全长锚固技术为核心并采用数值模拟修正的动态支护优化方案,对巷道重点支护区域进行局部支护强化设计。结果表明:该支护优化方案改善了围岩特性,通过增加围岩有效压应力来减小巷道变形量,提高了围岩抗变形能力,支护效果比较显着。
二、软弱破碎岩石巷道施工技术(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、软弱破碎岩石巷道施工技术(论文提纲范文)
(1)TBM穿越破碎带刀盘卡机机理与工程应用(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 选题背景与意义 |
1.2 国内外研究现状及评述 |
1.2.1 TBM卡机致灾类型 |
1.2.2 TBM卡机理论研究 |
1.2.3 TBM卡机试验研究 |
1.2.4 TBM卡机数值研究 |
1.2.5 TBM卡机防控脱困技术 |
1.2.6 国内外研究现状评述 |
1.3 研究内容、创新点与技术路线 |
1.3.1 主要研究内容 |
1.3.2 研究方法与技术路线 |
1.3.3 创新点 |
第二章 TBM穿越破碎带模型试验系统研发 |
2.1 TBM隧道掘进模拟相似准则 |
2.1.1 相似准则的量纲分析法 |
2.1.2 机器-土体系统相似模拟理论 |
2.1.3 TBM-围岩系统相似理论 |
2.1.4 TBM-围岩系统相似模拟准则 |
2.2 TBM破碎带掘进模型试验系统研制 |
2.2.1 试验系统概述 |
2.2.2 TBM缩尺模型 |
2.2.3 围岩模拟系统 |
2.2.4 控制监测系统 |
2.3 青岛地铁TBM过破碎带刀盘卡机模型试验 |
2.3.1 工程背景 |
2.3.2 相似材料配制 |
2.3.3 模型试验方案 |
2.3.4 掘进过程模拟 |
2.4 TBM过破碎带刀盘卡机灾变演化规律 |
2.4.1 破碎带塌落拱形态分析 |
2.4.2 TBM刀盘扭矩变化规律 |
2.4.3 刀盘面板受挤压力变化规律 |
2.4.4 刀盘推力变化规律 |
2.4.5 排渣率变化规律 |
2.4.6 应力场变化规律 |
2.4.7 位移场变化规律 |
2.5 本章小结 |
第三章 TBM过破碎带刀盘卡机机制分析 |
3.1 模型试验设计 |
3.1.1 试验方法 |
3.1.2 试验方案 |
3.2 TBM破碎带掘进适应性分析 |
3.2.1 刀盘转速 |
3.2.2 推进速度 |
3.2.3 隧道埋深 |
3.2.4 断层宽度 |
3.2.5 断层充填介质 |
3.3 TBM过破碎带刀盘卡机机制分析 |
3.3.1 地质与掘进参数影响规律分析 |
3.3.2 断层破碎带掘进TBM响应识别特征 |
3.3.3 刀盘卡机灾害演变规律 |
3.4 本章小结 |
第四章 TBM过破碎带机-岩相互作用分析 |
4.1 TBM过破碎带数值模拟计算方法 |
4.1.1 硬岩地层掘进模拟方法 |
4.1.2 破碎带地层掘进模拟方法 |
4.2 数值计算模型 |
4.2.1 模型建立 |
4.2.2 TBM硬岩切削掘进动态仿真 |
4.3 TBM过破碎带多元信息演变规律 |
4.3.1 破碎带地层土拱效应分析 |
4.3.2 破碎带地层位移场演变规律 |
4.3.3 破碎带地层应力场演变规律 |
4.3.4 TBM负载演变规律 |
4.4 本章小结 |
第五章 TBM过破碎带刀盘卡机力学模型 |
5.1 开挖面极限支护力计算 |
5.1.1 “连拱-截锥体”模型 |
5.1.2 模型参数确定 |
5.1.3 端承拱 |
5.1.4 摩擦拱 |
5.1.5 截锥体 |
5.1.6 模型验证 |
5.1.7 支护力影响因素分析 |
5.1.8 开挖扰动及坍塌土体区域预测 |
5.2 TBM刀盘扭矩计算 |
5.2.1 刀盘扭矩主控因素 |
5.2.2 扭矩计算模型及卡机判据 |
5.3 本章小结 |
第六章 工程应用 |
6.1 工程事故灾害 |
6.1.1 工程概况 |
6.1.2 刀盘卡机致灾过程 |
6.1.3 刀盘卡机理论判识及致灾原因分析 |
6.2 断层破碎带刀盘卡机脱困注浆治理 |
6.2.1 断层破碎带刀盘卡机治理难点 |
6.2.2 断层带松动塌落界限 |
6.2.3 断层破碎带刀盘卡机注浆加固治理原则 |
6.2.4 注浆加固治理方案 |
6.2.5 注浆加固材料及参数控制 |
6.3 断层破碎带注浆加固工艺 |
6.3.1 前进式分段注浆工艺 |
6.3.2 深部定域控制注浆工艺 |
6.4 施工过程及效果 |
6.4.1 注浆加固施工过程 |
6.4.2 注浆过程效果检验 |
6.4.3 注浆加固效果检验 |
6.4.4 TBM脱困掘进效果 |
6.5 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 展望 |
致谢 |
参考文献 |
攻读学位期间发表的学术论文及参与的项目 |
博士期间发表的论文 |
博士期间获得/申请的专利 |
博士期间参与的科研项目 |
学位论文评阅及答辩情况表 |
(2)平顶山矿区典型深井巷道围岩内外承载协同控制研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状与存在不足 |
1.3 研究目标和内容 |
1.4 主要创新点 |
2 矿区典型深井巷道工程地质特征 |
2.1 生产条件与地质特征 |
2.2 典型巷道围岩结构与力学特性 |
2.3 围岩蠕变特性 |
2.4 本章小结 |
3 深井巷道围岩承载特性演化特征 |
3.1 围岩强度时空演化特征原位实测 |
3.2 深井巷道围岩应力演变规律 |
3.3 深井巷道围岩变形特征 |
3.4 深井巷道围岩承载特性 |
3.5 本章小结 |
4 深井巷道围岩内外承载协同控制机理 |
4.1 内外承载结构协同控制理念及力学模型 |
4.2 巷道围岩内外承载“三协同”作用机理 |
4.3 巷道围岩协同控制支护强度与时机 |
4.4 本章小结 |
5 深井巷道围岩内外承载协同控制技术 |
5.1 平顶山矿区巷道围岩稳定影响因素及分类 |
5.2 不同支护方式下内外承载结构演变特征 |
5.3 深井巷道围岩协同承载控制思路与对策 |
5.4 内外承载结构协同控制效果 |
5.5 围岩内外协同承载控制效果评价方法及技术体系 |
5.6 本章小结 |
6 深井巷道围岩内外承载协同控制工业性试验 |
6.1 平煤一矿千米埋深复合型巷道协同控制方案及应用 |
6.2 平煤四矿低强度型巷道协同控制方案及应用 |
6.3 平煤四矿高应力型巷道协同支护方案及应用 |
6.4 本章小结 |
7 主要结论与展望 |
7.1 主要结论 |
7.2 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(3)深井高应力软岩硐室流变破坏特征及控制研究(论文提纲范文)
致谢 |
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 存在的主要不足 |
1.4 研究目标和研究内容 |
1.5 研究方法与技术路线 |
2 硐室围岩结构及力学特征 |
2.1 硐室工程地质概况 |
2.2 区域地应力特点 |
2.3 硐室围岩结构 |
2.4 硐室围岩力学参数 |
2.5 本章小结 |
3 硐室围岩流变破坏特征 |
3.1 岩石流变特性 |
3.2 硐室流变破坏数值模拟 |
3.3 绞车基础流变破坏分析 |
3.4 本章小结 |
4 围岩控制技术及方案 |
4.1 硐室围岩失稳破坏原因分析 |
4.2 围岩承载机理分析 |
4.3 围岩控制技术 |
4.4 硐室围岩控制对策与方案 |
4.5 本章小结 |
5 工业性试验 |
5.1 硐室原支护方式 |
5.2 硐室修复方案 |
5.3 注浆材料及注浆参数 |
5.4 施工工艺与技术要求 |
5.5 硐室变形监测 |
5.6 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(4)上海庙矿区弱胶结软岩巷道底鼓破坏机制与支护技术研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及研究意义 |
1.2 国内外研究现状 |
1.3 主要研究内容 |
1.4 研究方法与技术路线 |
2 软岩巷道底鼓影响因素及其特征分析 |
2.1 巷道围岩物理力学性质及成分分析 |
2.2 区段煤柱支承压力影响 |
2.3 支护强度与巷道断面形状 |
2.4 影响软岩巷道变形的正交模拟试验 |
2.5 巷道底鼓成因及底鼓类型分析 |
2.6 本章小结 |
3 软岩回采巷道底鼓机理分析 |
3.1 力学模型的理论基础 |
3.2 软岩巷道底鼓力学模型 |
3.3 底鼓力源分析计算 |
3.4 榆树井13803轨道顺槽底板压力解析计算 |
3.5 本章小结 |
4 新型反底拱支护技术及其控制机理 |
4.1 回采巷道底板稳定性控制的基本原则 |
4.2 新型反底拱支护技术 |
4.3 底鼓控制机理 |
4.4 底鼓控制参数优化研究 |
4.5 本章小结 |
5 工程应用 |
5.1 工程概况 |
5.2 榆树井矿13803轨道顺槽底鼓控制技术 |
5.3 底鼓控制效果分析 |
5.4 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 存在问题与展望 |
参考文献 |
作者简历 |
致谢 |
学位论文数据集 |
(5)弱胶结粉砂岩巷道顶板围岩力学特性及稳定性控制(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.2.1 弱胶结巷道支护理论研究 |
1.2.2 弱胶结巷道支护技术研究 |
1.3 存在的主要问题 |
1.4 研究内容及研究方法 |
1.4.1 主要研究内容 |
1.4.2 研究方法及技术路线 |
第二章 弱胶结粉砂岩巷道围岩变形特征及围岩力学特性 |
2.1 矿井地质概况 |
2.1.1 工程地质 |
2.1.2 3402工作面回风巷工程概况 |
2.1.3 试验巷道断面及原有支护方案 |
2.2 弱胶结粉砂岩巷道顶板变形特征及分析 |
2.2.1 弱胶结粉砂岩巷道顶板变形情况 |
2.2.2 巷道顶板支护失效特征及主要问题 |
2.2.3 弱胶结粉砂岩巷道围岩变形特征成因分析 |
2.3 巷道顶板粉砂岩矿物成分分析 |
2.3.1 微观结构分析 |
2.3.2 物化成分分析 |
2.4 点载荷实验 |
2.5 巷道顶板粉砂岩浸水崩解试验 |
2.6 本章小结 |
第三章 弱胶结粉砂岩巷道围岩失稳机制 |
3.1 弱胶结粉砂岩巷道顶板失稳机理 |
3.1.1 弱胶结粉砂岩对顶板稳定性影响 |
3.1.2 水-岩作用破坏机理 |
3.2 弱胶结粉砂岩巷道围岩失稳力学分析 |
3.2.1 力学模型选取与基本假定 |
3.2.2 松散体围岩压力计算及破坏失稳分析 |
3.3 巷道围岩支护结构失效机理力学分析 |
3.4 本章小结 |
第四章 不同注浆方案的弱胶结粉砂岩注浆体力学试验 |
4.1 试验设备 |
4.2 试件制备和试验方法 |
4.2.1 马丽散与粉砂岩胶结试件制备 |
4.2.2 水泥与粉砂岩胶结试件制备 |
4.2.3 试验方法 |
4.3 试验结果与分析 |
4.3.1 马丽散与粉砂岩胶结试件分析 |
4.3.2 水泥与粉砂岩胶结试件分析 |
4.3.3 对比分析 |
4.4 本章小结 |
第五章 弱胶结粉砂岩巷道围岩稳定性控制及支护优化 |
5.1 弱胶结粉砂岩巷道围岩稳定性控制 |
5.1.1 弱胶结粉砂岩巷道围岩稳定性原理 |
5.1.2 弱胶结粉砂岩巷道围岩稳定性控制方法 |
5.2 关键技术 |
5.2.1 注浆加固支护技术 |
5.2.2 锚杆锚索联合支护技术 |
5.3 联合优化支护方案设计 |
5.3.1 巷道顶板注浆加固方案设计 |
5.3.2 锚杆锚索联合支护方案设计 |
5.4 弱胶结粉砂岩巷道围岩支护数值模拟研究 |
5.4.1 模型建立 |
5.4.2 模拟结果与分析 |
5.5 现场工程设计及实际应用效果 |
5.5.1 工程应用设计 |
5.5.2 实际应用效果 |
5.6 本章小结 |
第六章 主要结论与展望 |
6.1 主要结论 |
6.2 展望 |
参考文献 |
附录 攻读学位期间发表的论文与科研成果清单 |
致谢 |
(6)复杂条件下软弱破碎带围岩稳定性控制技术研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 概述 |
1.2 国内外研究现状和发展趋势 |
1.2.1 国内外围岩稳定性分析方法现状 |
1.2.2 国内外岩石变形破坏规律研究现状 |
1.2.3 国内外隧道围岩稳定性研究现状 |
1.3 论文主要研究内容与方法 |
1.3.1 论文主要研究内容 |
1.3.2 论文主要研究方法 |
1.3.3 论文研究的技术路线 |
2 桃子娅隧道工程地质评价与围岩稳定性分析 |
2.1 自然地理 |
2.1.1 地形、地貌 |
2.1.2 水文、气候 |
2.2 工程地质条件 |
2.2.1 地质构造 |
2.2.2 地层岩性 |
2.2.3 地震 |
2.2.4 地应力 |
2.3 水文地质条件 |
2.3.1 地表水 |
2.3.2 地下水 |
2.3.3 水文地质分区 |
2.4 隧道设计概况 |
2.4.1 隧道断面尺寸 |
2.4.2 隧道衬砌设计 |
2.5 隧道工程地质评价与围岩定级 |
2.5.1 左幅隧道工程地质评价与围岩定级 |
2.5.2 左幅隧道工程地质评价与围岩定级 |
2.6 影响桃子娅隧道围岩稳定性因素分析 |
2.6.1 内在影响因素因素 |
2.6.2 外在影响因素因素 |
2.7 本章小结 |
3 隧道穿越软弱破碎段围岩基础力学性质研究与分析 |
3.1 前言 |
3.2 实验准备 |
3.2.1 岩石试件准备 |
3.2.2 试验主要仪器 |
3.3 试验方案及数据处理 |
3.3.1 巴西圆盘劈裂试验方案 |
3.3.2 单轴压缩试验方案 |
3.3.3 三轴压缩试验方案 |
3.3.4 数据处理方法 |
3.4 间接拉伸力学特性 |
3.4.1 拉伸变形特征 |
3.4.2 拉伸强度与破坏特征 |
3.5 单轴压缩力学特性 |
3.5.1 变形与破坏特征 |
3.5.2 强度特征与脆性特征 |
3.6 三轴压缩力学特性 |
3.6.1 三轴压缩变形特征 |
3.6.2 三轴压缩强度特征 |
3.6.3 三轴压缩破坏特征 |
3.7 本章小结 |
4 隧道穿越软弱破碎段岩石卸荷力学性质研究与分析 |
4.1 前言 |
4.2 卸荷试验方案 |
4.1.1 不同初始围压的卸荷试验方案 |
4.1.2 不同卸荷速率的卸荷试验方案 |
4.1.3 不同卸荷路径的卸荷试验方案 |
4.3 卸荷变形破坏的围压效应 |
4.3.1 卸荷变形的围压效应 |
4.3.2 卸荷强度的围压效应 |
4.3.3 卸荷破坏的围压效应 |
4.4 卸荷变形破坏的路径影响 |
4.4.1 卸荷路径对变形破坏的影响 |
4.4.2 卸荷路径对强度的影响 |
4.5 卸荷变形破坏的速率效应 |
4.5.1 卸荷速率对变形破坏的影响 |
4.5.2 卸荷速率对强度的影响 |
4.6 小结 |
5 隧道穿越软弱破碎带围岩稳定性数值模拟分析 |
5.1 前言 |
5.2 软件概述 |
5.2.1 分析求解原理 |
5.2.2 分析求解过程 |
5.3 数值模拟的模型建立与参数选择 |
5.3.1 模型的基本假设 |
5.3.2 模型尺寸 |
5.3.3 模型本构关系与边界条件 |
5.3.4 模型力学参数 |
5.3.5 开挖方式及工况说明 |
5.4 现场监测与数值模拟对比分析 |
5.4.1 监控测量目的与方案 |
5.4.2 监控测量管理等级 |
5.4.3 监控测量结果对比分析 |
5.5 不同支护工况模拟结果分析 |
5.5.1 竖向与水平应力分析 |
5.5.2 最大与最小主应力分析 |
5.5.3 围岩塑性区分析 |
5.6 本章小结 |
6 隧道穿越软弱破碎带围岩支护及控制技术研究 |
6.1 前言 |
6.2 软弱破碎隧道围岩稳定性判据 |
6.2.1 软弱破碎围岩的定义 |
6.2.2 围岩强度判据 |
6.2.3 围岩变形速率或变形量判据 |
6.2.4 围岩松动圈判据 |
6.3 围岩施工变形应对措施及控制基准的制定 |
6.3.1 预留变形量及位移管理等级 |
6.3.2 围岩施工沉降及收敛控制基准 |
6.3.3 围岩施工变形应对措施 |
6.4 软弱破碎隧道支护及控制技术研究 |
6.4.1 桃子娅隧道特殊设计段数据采集 |
6.4.2 极限变形速率与极限位移的确定 |
6.4.3 围岩沉降及收敛变形基准判定 |
6.4.4 软弱破碎段支护参数设计与效果评价 |
6.5 本章小结 |
7 结论与展望 |
7.1 主要的结论 |
7.2 论文的不足 |
7.3 进一步研究的展望 |
致谢 |
参考文献 |
附录 |
(7)深部松散煤体巷道流变机理研究及控制对策(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 选题背景与意义 |
1.2 国内外研究现状 |
1.3 目前研究存在的不足 |
1.4 研究内容与方法 |
2 煤岩体参数反演的算法及模型 |
2.1 参数反演的意义及对象 |
2.2 支持向量机原理 |
2.3 天牛须算法原理 |
2.4 进化支持向量机(ESVM) |
2.5 煤岩参数反演的BAS-ESVM模型 |
2.6 本章小结 |
3 实验室构建等效松散煤体 |
3.1 典型松散煤层实际赋存状态 |
3.2 成型煤体等效于现场松散煤体的方法 |
3.3 原煤分筛与含水率测定 |
3.4 实验室成型煤体及样本构建 |
3.5 基于BAS-ESVM反演模型构建等效型煤 |
3.6 本章小结 |
4 松散煤体流变特性与模型研究 |
4.1 煤体试样单轴流变试验 |
4.2 流变特性试验结果与分析 |
4.3 松散煤体蠕变方程的建立 |
4.4 松散煤体流变模型参数辨识 |
4.5 本章小结 |
5 深部巷道松散煤体流变参数反演与机理分析 |
5.1 典型松散煤巷流变工程案例 |
5.2 基于BAS-ESVM模型的巷道煤体流变参数反演 |
5.3 流变参数反演结果分析 |
5.4 松散煤体巷道流变失稳演化机理研究 |
5.5 本章小结 |
6 高压旋喷加固松散煤体现场试验研究 |
6.1 高压旋喷注浆破煤与加固机理 |
6.2 高压水平旋喷扩孔成桩现场试验 |
6.3 试验结果与分析 |
6.4 本章小结 |
7 煤巷旋喷加固数值模拟研究 |
7.1 煤浆固结体物理力学性质测试 |
7.2 高压旋喷加固技术方案初步设计 |
7.3 旋喷加固巷道数值模型建立 |
7.4 旋喷加固控制巷道流变机理分析 |
7.5 旋喷加固技术方案优化及控制效果分析 |
7.6 支护方案的综合对比分析 |
7.7 本章小结 |
8 结论与展望 |
8.1 结论 |
8.2 创新点 |
8.3 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(8)平煤一矿高应力软岩巷道底鼓机理及控制技术研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.3 论文主要研究内容 |
1.4 研究方法与技术路线 |
2 工程概况 |
2.1 -950水平回风大巷概况 |
2.2 -950水平回风大巷变形破坏情况调查分析 |
3 高应力软岩巷道围岩结构特征及地质力学分析 |
3.1 巷道围岩结构特征探测 |
3.2 巷道原岩应力测试 |
3.3 岩石物理力学性质测试 |
3.4 岩石矿物组分及微结构分析 |
3.5 岩石崩解实验 |
3.6 巷道类型分析 |
3.7 本章小结 |
4 高应力软岩巷道底鼓机理研究 |
4.1 应力型底鼓 |
4.2 膨胀型底鼓 |
4.3 塑性挤出型底鼓 |
4.4 巷道底鼓的力学模型 |
4.5 -950水平回风大巷底鼓主要影响因素分析 |
4.6 -950水平回风大巷底鼓控制原则 |
4.7 本章小结 |
5 高应力软岩巷道底鼓控制技术研究 |
5.1 -950水平回风大巷底板卸压技术 |
5.2 -950水平回风大巷底板加固技术 |
5.3 -950水平回风大巷底板防治水技术 |
5.4 本章小结 |
6 工业性试验 |
6.1 底鼓控制技术方案 |
6.2 施工工艺及参数 |
6.3 巷道围岩表面位移监测分析 |
6.4 本章小结 |
7 结论 |
参考文献 |
作者简历 |
学位论文数据集 |
(9)新城金矿-830m中段支护工程设计与施工管理(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景和意义 |
1.2 国内外研究现状 |
1.3 主要研究内容 |
1.4 研究方法与技术路线 |
2 矿山概况及区域地质调查 |
2.1 矿山简介 |
2.2 矿区地质概况 |
2.3 研究现场工程地质勘查及分析 |
2.4 本章小结 |
3 岩石力学实验及岩体结构面调查 |
3.1 矿区地应力分部规律 |
3.2 室内岩石力学实验 |
3.3 巷道岩体结构面信息调查 |
3.4 本章小结 |
4 巷道失稳破坏机理分析 |
4.1 影响矿山巷道围岩稳定性的因素 |
4.2 新城金矿巷道围岩破坏类型及稳定性影响因素 |
4.3 新城金矿破碎巷道围岩失稳机理 |
4.4 本章小结 |
5 巷道支护方案设计及施工管理 |
5.1 巷道围岩稳定性控制理论分析 |
5.2 巷道支护方案设计 |
5.3 -830m中段巷道支护方案设计 |
5.4 支护工程施工管理 |
6 结论及展望 |
6.1 主要结论 |
6.2 展望 |
参考文献 |
作者简历 |
致谢 |
(10)高应力软岩巷道锚杆支护优化及工程应用研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
1 绪论 |
1.1 研究背景与意义 |
1.2 国内外研究现状 |
1.2.1 高地应力对巷道稳定性影响研究现状 |
1.2.2 锚固体载荷传递机制研究现状 |
1.2.3 锚固体锚固影响因素及锚固失效研究 |
1.2.4 地下工程锚固围岩理论计算研究现状 |
1.2.5 高预应力锚杆工程应用研究现状 |
1.3 目前存在的主要问题 |
1.4 主要研究内容与技术路线 |
1.4.1 主要研究内容 |
1.4.2 技术路线 |
2 深部矿区地应力分布规律研究 |
2.1 地应力概述 |
2.1.1 地应力成因 |
2.1.2 地应力及高应力软岩判别标准 |
2.2 安徽、山东矿区地应力分布特点 |
2.2.1 安徽、山东垂直应力随埋深变化规律 |
2.2.2 安徽、山东矿区水平主应力随埋深变化规律 |
2.2.3 安徽、山东矿区侧压系数随埋深变化规律 |
2.3 潘三煤矿地应力分布规律及对巷道稳定影响 |
2.3.1 淮南矿区及潘三矿地质概况 |
2.3.2 潘三煤矿地应力测试方案 |
2.3.3 潘三煤矿地应力测量结果 |
2.3.4 潘三煤矿地应力分布及对巷道影响 |
2.4 本章小结 |
3 巷道布置方向对锚杆支护围岩影响研究 |
3.1 数值计算模型及研究方案 |
3.1.1 数值计算模型 |
3.1.2 不同巷道布置方向围岩计算条件 |
3.2 不同巷道布置方向对锚杆支护围岩分析 |
3.2.1 围岩应力的分布规律 |
3.2.2 锚杆轴力的演化规律 |
3.3 不同巷道布置方向锚杆监测点轴力分析 |
3.4 本章小结 |
4 基于拉拔试验锚杆加固岩体影响因素研究 |
4.1 锚杆拉拔力学试验方案及内容 |
4.1.1 正交试验统计分析方法 |
4.1.2 试验目的及方案 |
4.1.3 试验装置与材料 |
4.2 拉拔试验结果分析 |
4.2.1 锚杆拉拔破坏失效形式 |
4.2.2 锚杆拉拔全荷载位移分析 |
4.2.3 锚杆拉拔过程效果分析 |
4.3 正交试验结果分析 |
4.3.1 极差分析 |
4.3.2 方差分析 |
4.4 锚固因素敏感性分析 |
4.5 本章小结 |
5 高预应力全长锚固工艺研究 |
5.1 高预应力减摩垫片研发 |
5.1.1 锚杆预应力施加现状 |
5.1.2 垫片施加预应力理论分析 |
5.1.3 扭矩-预应力转化试验 |
5.2 创建高预应力全长锚固工艺及设计锚杆 |
5.2.1 传统锚杆支护受力形式 |
5.2.2 高预应力后张法全长锚固工艺 |
5.2.3 高预应力全长锚固锚杆设计 |
5.3 数字化测力锚杆实时监测系统 |
5.3.1 数字化测力锚杆系统简介 |
5.3.2 测力锚杆数据采集系统 |
5.3.3 数据接收分析系统 |
5.4 高预应力全长锚固工艺试验验证 |
5.4.1 高预应力全长锚固工艺室内试验分析 |
5.4.2 高预应力全长锚固工艺现场验证 |
5.6 本章小结 |
6 非均匀应力场预应力全长锚固锚杆支护机理 |
6.1 围岩-锚杆支护机理研究 |
6.2 预应力全长锚固锚杆支护围岩理论模型 |
6.2.1 巷道围岩力学计算模型及假设 |
6.2.2 预应力全长锚固锚杆支护计算模型 |
6.3 锚固围岩-锚杆受力分析 |
6.3.1 围岩-锚杆受力基本条件 |
6.3.2 弹性区围岩受力分析 |
6.3.3 非锚固软化区围岩受力分析 |
6.3.4 锚固软化区围岩-锚杆受力分析 |
6.3.5 锚固破碎区围岩-锚杆受力分析 |
6.4 锚杆支护影响因素分析 |
6.4.1 侧压系数与锚杆支护影响关系 |
6.4.2 预应力与锚杆支护影响关系 |
6.4.3 岩体弹性模量与锚杆支护影响关系 |
6.4.4 锚杆长度与锚杆支护影响关系 |
6.5 巷道锚杆轴力监测 |
6.5.1 试验巷道地质概况 |
6.5.2 测力锚杆结果验证 |
6.6 本章小结 |
7 高预应力全长锚固支护控制方法及工程应用 |
7.1 锚杆优化支护控制方法 |
7.1.1 锚杆优化设计支护方案 |
7.1.2 锚杆优化支护设计原则 |
7.2 潘三矿工程应用概况 |
7.2.1 巷道地质概况 |
7.2.2 围岩物理力学性质 |
7.2.3 巷道初始支护设计 |
7.2.4 巷道初始支护监测 |
7.3 锚杆支护方案优化及验证 |
7.3.1 锚杆支护方案优化 |
7.3.2 支护优化验证 |
7.4 本章小结 |
8 结论与展望 |
8.1 主要结论 |
8.2 主要创新点 |
8.3 进一步研究的建议与展望 |
参考文献 |
作者简历及攻读博士学位期间取得的研究成果 |
学位论文数据集 |
四、软弱破碎岩石巷道施工技术(论文参考文献)
- [1]TBM穿越破碎带刀盘卡机机理与工程应用[D]. 朱光轩. 山东大学, 2021
- [2]平顶山矿区典型深井巷道围岩内外承载协同控制研究[D]. 黄庆显. 中国矿业大学, 2021(02)
- [3]深井高应力软岩硐室流变破坏特征及控制研究[D]. 王亚. 中国矿业大学, 2020(03)
- [4]上海庙矿区弱胶结软岩巷道底鼓破坏机制与支护技术研究[D]. 卢建宇. 山东科技大学, 2020(06)
- [5]弱胶结粉砂岩巷道顶板围岩力学特性及稳定性控制[D]. 刘泽. 湖南科技大学, 2020(06)
- [6]复杂条件下软弱破碎带围岩稳定性控制技术研究[D]. 罗毅. 贵州大学, 2020(04)
- [7]深部松散煤体巷道流变机理研究及控制对策[D]. 孙元田. 中国矿业大学, 2020
- [8]平煤一矿高应力软岩巷道底鼓机理及控制技术研究[D]. 张超. 中国矿业大学, 2020(03)
- [9]新城金矿-830m中段支护工程设计与施工管理[D]. 原凯. 山东科技大学, 2020(06)
- [10]高应力软岩巷道锚杆支护优化及工程应用研究[D]. 陶文斌. 北京交通大学, 2020(06)