一、结合组态软件的仿真优化技术(论文文献综述)
赵亚坤[1](2021)在《选煤厂块煤自动入仓关键技术研究与实现》文中指出随着选煤厂智能化、自动化建设的大力推进,作为选煤厂块煤产品存储中转地点的煤仓,实现块煤产品入仓的煤仓入仓工艺流程自动化,对提升选煤厂自动化水平、运转效率及安全程度都有重要的积极意义。选煤厂煤仓入仓工艺流程主要是将已洗选分好的块煤产品从运煤皮带上经入仓设备分流而进入煤仓,完成中转存储处理。其中涉及到多种的电气设备,以装仓小车为主体,配合各种传感器及多种机械设备实现块煤产品的准确入仓。不仅是块煤产品入仓,为了安全生产起见,同时也为了减少停车清煤浪费工时,还需要兼顾运动设备溜煤可能带来的堆煤、碰撞等事故。对煤仓入仓工艺流程进行自动化改造,按照块煤产品入仓工艺所属的流程工业的特点,设计各入仓设备顺序自动控制、入仓工艺连续落煤入仓作业的新流程。通过对晋能控股煤业集团赵庄矿选煤厂煤仓现场的调研与分析,现有的煤仓入仓工艺存在诸多问题,如全程由岗位司机手动操作,效率低、危险系数大;各入仓设备由岗位司机分立控制,启动执行某一工序的入仓设备需要自行判断和手动操作,设备之间没有工序上的协同关系,工序及设备运行易混淆、容易出现误操作现象;现场缺少能够直观、准确显示煤仓仓位数据的传感器件,岗位司机通过手持探灯照射煤仓内部判断煤位,肉眼误判的可能性极高,易造成堆煤安全事故;装仓小车是运动设备,煤仓仓上轨道距离长,岗位司机随车奔走手动控制装仓小车,劳动强度大、危险系数高等。为了解决这些实际生产问题并且契合选煤厂智能化、自动化建设,本文进行了块煤自动入仓系统的设计,分析研究煤仓入仓工艺过程,针对上述现有选煤厂煤仓入仓工艺存在的问题,进行了块煤自动入仓系统设计,进行了块煤自动入仓系统整体架构及关键技术研究,通过对移动检测仓位与装仓小车控制之间关系的分析,建立了数学模型,将仓位信息与装仓小车控制联系起来,能够通过随车安装雷达料位计收取的仓位信号实时调整装仓小车运行速度,另外以自动化流程设计来实现各入仓设备的协同顺序运行,解决人工手动控制、煤仓仓位误判以及各入仓设备分立控制的问题;提出装仓小车测距定位网络系统设计,通过增量型旋转编码器及磁钢接近开关实现装仓小车行进距离测量和仓上定位,同时进行了安全冗余性控制机制研究和程序设置,解决运动设备位距状态监控及端部冲撞、脱轨问题;提出煤仓入仓工艺实时及预测性动态仿真设计,通过上位机仿真软件来对现场煤仓入仓工艺进行全流程的实时性动态仿真和预测性动态仿真,为操作人员和运维人员提供关于煤仓入仓工艺流程的直观画面和动态信息,包括工艺流程的进度、入仓设备的运行状态、煤仓仓位的动态指示及填仓预测时间等,在上位机侧能够直接对接现场,为现场生产提供实时反馈和预测性填仓时间。本文采用西门子公司生产的S7-1200系列PLC作为控制核心硬件,上位机仿真软件采用Win CC RT Professional软件。通过主-从双控制柜联合控制模式控制各入仓设备协同完成煤仓入仓工艺流程;构建了基于移动仓位检测的装仓小车控制模型,将仓位数据、位距数据等作为控制变量引入系统中,参与装仓小车自动化控制;以无线Wi Fi通讯取代有线网络通讯,解决运动设备的安全控制和线缆挂断;通过提前判断落料区间,从而使装仓小车运行效率提升,避免浪费时间寻找落料点位置;通过煤仓入仓过程实时及预测性动态仿真,在上位机侧实现现场工况的及时反馈和填仓预测时间的数值显示,为现场生产提供实时性和预测性信息。本系统在设计完成后即在生产现场进行了工业试运行,试运行阶段系统运行平稳可靠,成功解决了煤仓现场全手动操作、岗位司机随车奔走、生产数据不直观等问题,块煤自动入仓系统运行达到了设计预期,情况良好,提高了生产效率、节省了人力、提高了生产安全程度。
乔艳丽[2](2021)在《基于S7-300 PLC的油库计算机监控系统设计》文中研究指明油库是储存油料的基地,油库系统的稳定性和高效性直接影响着整个产业的工艺生产和经济效益。因此,设计一个安全高效的油库监控系统,对于提高油库生产效率和提升系统自动化监管水平是极其重要的。本课题以西安市某油库为研究对象,按照厂家要求和油库工艺特点确定了控制需求,设计了基于西门子S7-300 PLC和PROFINET与PROFIBUS-DP总线相结合的计算机监控系统设计方案。在确定总体方案的基础上,进行了系统硬件部分设计和软件部分设计,硬件部分采用了IPC+PLC+ET200M分站的架构形式,并对PLC模块和现场硬件设备进行了选型。软件部分采用King View 6.55设计上位监控计算机程序,运用STEP 7 V5.6完成PLC控制程序编写,使用Win CC Flexible 2008完成触摸屏程序设计。在油库工艺生产过程中,为实现对厂区供油管道内流量的恒定控制,本文根据管道内流量控制对象的特性,提出了基于BP神经网络PID的控制策略,并通过MATLAB仿真对比实验,验证了基于BP神经网络PID算法的优越性和可靠性。实际应用表明,本文设计的基于S7-300 PLC的油库监控系统稳定性高、可靠性强、控制效果显着,可以满足该油库监控自动化的需求。
薛春旺[3](2021)在《鞋面冲孔自动控制系统设计》文中提出鞋面冲孔是制鞋过程中非常重要的一道工艺流程,目前大多采用人工冲孔或半自动冲孔方式,劳动强度较大且冲孔精度较低,影响企业整体生产效率的提升,因此迫切需要研发一款全自动、高效率的鞋面冲孔自动控制系统。本文首先,讨论了该控制系统的功能需求及设计原则,规划了系统的总体架构,该系统采用上位机与下位机联合控制的方式,下位机选用一台PLC作为控制主站,四台PLC作为控制从站,上位机与下位机之间的通讯采用PROFINET网络,主从站之间的通讯采用Tp-Link网络,组成了分布式控制系统。其次,按照系统的功能需求对所需硬件进行选型,使用Eplan软件设计了硬件工作原理图、硬件接线图,以及根据I/O地址分布表完成了对PLC外部接线图的绘制,再根据PLC外部接线图、硬件接线图以及平台搭建可靠性与稳定性原则,完成了鞋面冲孔自动控制系统平台的搭建。接着,使用博图软件完成对系统硬件部分的组态以及PLC各个控制环节的程序编写,使用MCGS组态软件构建触摸屏的人机界面。最后,使用遗传算法将未优化的鞋面冲孔轨迹在Matlab软件上进行优化,模拟仿真优化前后的冲孔轨迹,对比结果,证实优化结果的可行性,进一步提高了鞋面冲孔效率。本文设计的鞋面冲孔自动控制系统来源于制鞋企业的实际生产线,系统结合了PLC控制技术和遗传算法原理,实现了对整个鞋面冲孔过程的自动控制,并且能实时监控各个工位的运行状况,能及时发现故障并处理,全自动、高效率的特点完全满足制鞋企业的需求,具有一定的现实意义。
凡占稳[4](2021)在《真空渗碳生产线智能控制系统的构建与技术研究》文中认为热处理是提升机械制造整体水平的核心技术之一,在装备制造业中,热处理对于确保产品质量,提升产品水平具有关键作用,是重要的基础工艺之一,对实现制造强国战略具有重要的支撑作用。但目前热处理是制造业信息化最薄弱的环节,已成为产品生命周期信息集成的瓶颈。本文通过对国内外热处理行业信息化智能化发展和热处理车间生产线现状的分析与研究,提出构建热处理生产线智能控制系统的设想。通过对生产线流程控制、智能调度、故障诊断、工艺模拟等技术的研究,实现一套热处理车间全自动的生产线生产模式,解决工业热处理车间生产不连续、成本高、生产信息管理混乱、产品质量不稳定等问题,实现热处理车间生产线的自动化、信息化和智能化。本文以汽车工业轴齿类零件真空热处理过程为依据和背景,建立了真空渗碳生产线智能控制系统,将智能控制系统分为PCS系统(英文全称Process Control System,过程控制系统,简称PCS系统)和热处理工艺专家系统,并着重对以下几个方面的关键技术开展了深入的研究和工作:1)根据车间实际生产情况,建立生产线级的PCS系统,基于控制系统相关理论知识,对PCS系统的网络层级结构和数据通信方式进行研究和设计。系统将车间的单台设备连接在一起,通过对底层设备信息的全面采集实现生产线全自动的流程控制和状态监测,打通了底层设备与上层计划管理系统的信息鸿沟。2)在定义料车功能和对料车控制系统进行设计的基础上,对智能控制系统中料车的智能调度问题进行研究。对生产线中转运料车进行建模,根据蚁群算法对料车的转运路径进行规划,并结合实际对蚁群算法进行优化,获得了料车最优的调度路径。3)对PCS系统各功能模块进行了设计。重点根据PCS系统的物理架构和逻辑结构对生产线的流程控制进行了研究和设计,基于功能分析法建立设备状态的监测模型,实现设备的监测与诊断。4)结合Fick定律和饱和值调整法建立真空渗碳模型,实现对真空渗碳工艺的模拟,并根据真空渗碳模型搭建仿真环境,对渗碳工艺模拟的结果进行计算。最后将生产线智能控制系统的研究成果应用于工程实际,并通过文字、图片等方式展示了智能控制系统的应用效果。
顾培耀[5](2021)在《加热炉钢坯顺序控制系统设计》文中研究说明我国是全球钢铁产量最大的一个发展中国家,因此在钢铁加工技术革新与推广上也一直给予了高度关注与重视。由于钢铁加工是一个非常耗能的行业,并且以加热炉耗能所占比例最高,所以加热炉控制就成为了最不容忽视的一个关键环节。对加热炉控制系统根据生产实际做出相应优化,既能从源头上保证钢坯质量、实现生产效率大幅提升,还能将能耗降到最低。因此改进与优化完善加热炉控制系统,最大限度地降低能耗,切实提高钢铁生产的质量和效率,这些都是利国利民的事,值得我们不断的探索研究。本论文设计便是以加热炉生产过程的控制为研究课题,分析研究了整个钢坯热轧工艺流程和操作时的各个因数,运用顺序控制设计了对加热炉的控制系统。作为本系统中最重要的加热炉的温控环节,以当前备受业界人士推崇与青睐的模糊PID控制算法为着手点,根据实际生产需求及系统运行要求设计出相适应的模糊PID控制器,并用软件对模糊PID控制算法和常规PID算法仿真并进行了对比分析,得出模糊PID控制比较优势。对加热炉的脉冲燃烧控制进行了研究分析,运用脉宽调制技术对烧嘴的燃烧输出时间经行控制,达到控制温度的效果。设计了模糊PID控制的温度控制系统和常规PID控制的炉压控制系统。最后设计了系统的组态监控系统,采用PROFIBUS DP构建网络通信,运用西门子Win CC软件设计系统监控界面,并对获得的温控及压控数据进行比较分析,验证设计系统的可用性。加热炉钢坯顺序控制系统能够在实际的生产设备中正常运行,实现了对加热炉的有效控制。相比于常规的控制系统,达到了优化生产流程、提高生产率和降低能耗的设计要求。能够有效的提高企业的经济效益,对加热炉的钢胚加工系统控制有一定的参考意义。
施璇[6](2021)在《城市排水泵站水泵群的调度优化与智能控制系统的设计与实现》文中认为近年来暴雨等极端天气频发引发城市内涝,对城市排水系统造成很大压力。如何通过智能化控制方式调度城市排水泵站中的水泵是目前城市排水智能化调度研究的热点问题之一。针对目前城市排水系统中仍以人工控制水泵为主要工作方式的现象,为实现根据降雨量进行水泵的自动调度,本文设计并实现了一种面向城市排水泵站的三层控制模型,并面向该模型的工程实现设计了控制模型中的数据交换方法。为了提高排水系统控制智能化水平,本文设计并实现了基于分布式仿真平台(Distributed Simulation Platform,DSP)的粒子群算法(Particle Swarm Optimization,PSO),从而实现了对泵群的调度。本文主要开展的工作如下:首先,本文面向积水量预测设计并实现了DSP-PSO算法。积水量数据采用雨洪管理模型(Storm Water Management Model,SWMM)软件根据天气预报的实测降雨量进行计算,并采用基于DSP-PSO算法和前向神经网络来构建预测方法。DSP-PSO算法能快速准确地实现对优化问题的求解,因此基于CPN网络使用分布式仿真平台实现了该算法。该算法设计了相邻CPN节点之间的通信机制和数据交换策略,并设计了本地CPN节点更新策略。使用仿真数据对比了BP神经网络、基于PSO算法改进前向神经网络以及DSP-PSO算法改进前向神经网络的预测性能。实验表明PSO算法比BP算法的神经网络预测准确率更高;而DSP-PSO算法相较于PSO算法在性能类似的同时,可以更稳定地获取目标函数的解。其次,本文还采用DSP-PSO算法对泵群进行了调度。以水泵间运行时间均衡为目标寻找泵群各水泵的最佳启泵水位,通过计算泵群运行时间的方差设计了泵群调度适应度函数,并将DSP-PSO算法与PSO算法进行寻优性能的对比。实验表明DSP-PSO算法相较于PSO算法能更好更快地对水泵群进行调度。最后,本文针对城市排水系统三层控制模型的工程实现设计了各层之间的数据交换方法,对三层控制模型中数据交换的网络延迟问题进行了讨论;并基于无线局域网实现了一个城市排水泵站三层控制模型的实物仿真,提出了改进网络稳定性的方法。最后本文设计并实现了一个排水泵站智能控制系统,系统运行表明设计的控制模型架构具有适用性。图[43]表[27]参[53]
宗嘉财[7](2021)在《水源热泵自适应控制系统设计与实现》文中指出能源的开发和利用是推动人类文明发展的根本,在国家构架现代能源体系的大背景下,各种清洁能源的提取利用技术层出不穷,其中,水源热泵空调系统是现代能源体系中地热清洁能源提取、利用的重要方式之一。水源热泵系统通过提取浅层水源至热泵机组进行能量转换提取,从而实现夏季制冷,冬季制热的功能。目前对水源热泵系统的技术研究主要集中在两个方面,一是从结构和匹配性中研究如何制造效率高,适用性强的热泵机组。二是从系统控制、运行过程中如何应用先进控制技术提升系统运行效率方面。而现阶段在热泵自身结构无法取得突出成果的情况下,优化控制系统将是提升系统效率的突破点。因此本文主要针对水源热泵控制系统展开研究,主要研究内容如下:首先,通过对水源热泵系统硬件组成及工作原理进行简要分析,并对国内外技术研究现状进行总结,针对热泵系统纯滞后、大延迟、非线性、多干扰等特点提出了应用先进自适应控制方法的可行性。然后,通过对机组和水泵模型进行辨识并应用SIMULINK工具进行模型搭建和仿真分析,在仿真分析过程中以能效最优为最终控制目标,建立系统优化控制模型,并针对性提出了最优供回水温差的变流量自适应模糊PID控制方法,控制模型中的参数通过预测方法获取并进行动态调整,通过模糊PID控制器实现水泵转速控制,从而通过控制流量使得系统供回水温差处于最优设定值,实现系统最优化运行的目标。最终,针对循环泵、热泵机组动态特性提出了一套自适应预测控制方法,实现热泵系统流量调节从而控制实际温差与设定值一致,并根据供回水温差调节循环泵运行频率,解决了传统控制方式协同性差、能耗高、稳定性差的问题。并通过在实际工程项目中搭建可编程控制器(PLC)硬件平台,应用POFINET总线和现场总线通信方式实现分布式远程I/O主从和仪表通信,根据工艺流程完成热泵机组、水泵、阀门和辅助设备的自动和联动控制,通过总线通信,实现系统运行过程中各重点状态数据的采集、处理、监测,并及时进行故障诊断、报警和显示等功能。同时,应用工控机远程监控系统,实现系统数据监测、远程控制、数据存储与节能分析,从而进一步提升整体系统的运行效率。在实际案列中以系统整体能效为分析依据,在一个工作周期内与常规控制方法相进行能效横向对比,得到了近5%的节能效果,极大提升水源热泵系统整体运行经济性,此控制方法可在同类设备和系统中进行推广应用。
薛培[8](2021)在《焚烧炉SCR烟气脱硝系统研究与开发》文中进行了进一步梳理随着人们对生活品质的提升和国家对环保方面的重视,在国内大气环境问题上提出新的要求,首当其冲的是工业领域污染气体排放问题。为响应国家环境保护政策要求,工业领域采用选择性催化还原(SCR)技术进行烟气脱硝处理,在工业生产过程减少氮氧化物(NOx)排放。论文阐述脱硝化学反应原理及脱硝工艺,分析影响SCR脱硝效率的因素,介绍脱硝系统喷氨控制方式。由于脱硝系统存在大滞后性和非线性等问题,使用常规控制方法即通过检测实际排放烟气中NOx浓度变化难以保证精准控制喷氨系统的喷氨量,同时因为SCR反应器内部复杂的反应机理和环境因素,使用烟气检测装置无法长时间准确的得到NOx浓度值。针对上述问题,论文通过建立GRNN神经网络预测模型,根据烟气的温度、流量等数据提前预测SCR反应器催化剂层处理后的烟气中NOx浓度,及时对喷氨控制系统稳定调节,提高烟气脱硝系统的稳定性,避免系统中氨气量过多或不足引起二次污染。仿真结果表明,基于神经网络预测算法的脱硝系统稳定性高、抗干扰能力强。论文以SCR烟气脱硝实际项目为平台,完成脱硝系统的控制系统硬件的设计、PLC控制程序的开发、上位机监控功能的组态,开发的系统已投入实际运行,满足现场需求。论文还采用组态软件与MATLAB相结合,将神经网络预测算法应用于该实际系统中,运行结果证明,将预测算法与传统控制方式相结合改善了控制效果,使系统响应速度及抗干扰能力提高。
于洋[9](2021)在《基于水质软测量的污水处理监控系统设计与研究》文中认为针对传统污水处理自动化程度不高、出水水质检测时间长且成本高等问题,以天津某污水处理厂项目为依托,设计一套基于水质软测量技术的污水处理监控系统。该系统实现了污水处理过程的参数监测和自动控制,并利用软测量模型实时推导出水水质,根据水质对现场工艺环节进行实时调整,提高了出水水质。论文首先在阐述天津某污水处理厂工艺流程的基础上,深入分析各工艺环节控制需求以及对出水水质的影响,初步确定与出水水质相关的辅助变量,利用辅助变量以及反向传播(BP)神经网络建立出水水质软测量模型,并通过粒子群算法(PSO)对模型权值和阈值进行优化。经现场历史运行数据训练、测试,仿真结果表明,经优化后的模型提高了软测量的精度。同时,根据污水处理厂工艺和自动化控制要求,完成污水处理监控系统设计,并实现水质软测量模型在项目中的应用。硬件设计方面,实现了三层工业网络的搭建,并在完成硬件选型、仪表选型、控制柜设计的基础上,配置各网络间的通信方式;软件开发方面,结合工艺要求,进行控制程序的开发,并完成监控画面功能组态。最后,论文实现了监控软件与MATLAB软测量算法的结合,同时建立与Access数据库的连接。现场运行结果表明,设计开发的基于水质软测量技术的污水处理监控系统可确保出水水质达标,污水处理效果显着提升。
杜思诚[10](2020)在《集散控制在火电厂除氧器水位控制中的应用》文中提出江苏中能科技发展有限公司自备电厂自投产运行后,发现除氧器水位自动控制方式存在控制精度低、抗干扰能力差、集散控制系统控制回路单一等问题,导致除氧器水位波动大,不能满足自动控制要求,影响机组安全生产运行。因此集散控制系统除氧器水位控制算法的优化势在必行。本文以集散控制系统除氧器水位控制方式的优化为研究对象,首先根据除氧给水系统的结构特性,选定差压式水位计作为除氧器水位测量的现场设备。其次,本文基于除氧器水位控制精度要求高、响应速度快、控制逻辑可靠的要求,对控制系统进行选型,DCS系统因为其操作简单,组态方式多样,信号传输稳定,硬件设施可靠性高,符合此次优化的需求,最终选择科远公司的DCS系统作为此次优化的控制系统。此外,本文结合除氧器水位调节的优化要求,选择以模糊PID为控制算法,串级三冲量为控制方式,使用DCS系统进行组态逻辑编写。模糊控制主要根据现场操作人员多年的工作经验总结,对数学模型的依赖程度低,能够根据目标对象的变化而自主变化,可以较好适应除氧器水位的控制要求。使用MATLAB仿真软件来对编写的逻辑算法进行数学模型的搭建和仿真,得出这种控制方式可以有效消除外部扰动对除氧器水位的干扰,保证了除氧器水位的稳定。最后,将优化后的集散控制系统(DCS)除氧器水位控制算法应用到实际生产中,有效改善了除氧器水位自动调节的品质,优化效果良好,实现了预期的目标。该论文有图36幅,表7个,参考文献74篇。
二、结合组态软件的仿真优化技术(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、结合组态软件的仿真优化技术(论文提纲范文)
(1)选煤厂块煤自动入仓关键技术研究与实现(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 装仓小车自动化运行及入仓设备协同控制的意义 |
1.1.3 装仓小车行进距离测量及定位的意义 |
1.1.4 煤仓入仓过程实时及预测性动态仿真的意义 |
1.2 国内外研究现状 |
1.2.1 装仓小车控制技术研究现状 |
1.2.2 煤仓入仓工艺研究现状 |
1.2.3 煤仓仓位检测技术研究现状 |
1.2.4 基于流程工业的煤仓入仓过程仿真技术研究现状 |
1.3 研究内容、研究方法及技术路线 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
1.4 本章小结 |
第2章 块煤自动入仓系统整体控制架构及关键技术研究 |
2.1 系统整体控制架构研究 |
2.1.1 原有控制模式分析及存在的问题 |
2.1.2 块煤自动入仓系统整体控制架构 |
2.2 移动检测技术研究 |
2.2.1 移动检测仓位技术分析 |
2.2.2 基于移动仓位检测的装仓小车控制模型分析 |
2.3 无线控制技术研究 |
2.3.1 无线通讯模式的适用性和优点分析 |
2.3.2 无线通讯模式的分类及选取 |
2.3.3 实现无线通讯技术的现场布置 |
2.4 落料区间的确定和模式研究 |
2.5 本章小结 |
第3章 煤仓入仓过程实时及预测性动态仿真研究 |
3.1 仿真系统研究 |
3.1.1 入仓过程实时性动态仿真研究 |
3.1.2 填仓预测性动态仿真研究 |
3.1.3 仿真系统关键驱动数据的获取 |
3.2 装仓小车测距定位网络系统研究 |
3.2.1 装仓小车测距定位网络系统模式分析 |
3.2.2 装仓小车测距定位网络系统关键技术问题分析 |
3.3 仿真系统界面和仿真内容研究 |
3.4 本章小结 |
第4章 块煤自动入仓系统设计 |
4.1 块煤自动入仓系统流程设计 |
4.2 硬件架构设计 |
4.2.1 硬件选型及简介 |
4.2.2 硬件整体架构 |
4.3 软件架构设计 |
4.3.1 软件选择及功能简介 |
4.3.2 软件整体架构 |
4.4 安全冗余性控制技术分析 |
4.5 本章小结 |
第5章 块煤自动入仓系统的实现及运行效果分析 |
5.1 基于移动仓位检测的装仓小车控制系统的实现 |
5.1.1 主-从双控制柜联合控制模式的实现 |
5.1.2 基于移动仓位检测的控制模型的实现 |
5.1.3 各入仓设备协同控制的实现 |
5.2 装仓小车测距定位网络系统的实现 |
5.2.1 装仓小车定位的实现 |
5.2.2 装仓小车行进距离测量的实现 |
5.3 煤仓入仓过程实时及预测性动态仿真的实现 |
5.3.1 Win CC RT Professional内的硬件仿真及通讯设置 |
5.3.2 Win CC RT Professional内的入仓流程画面设置及变量连接 |
5.4 工业现场运行效果分析 |
5.4.1 基于移动仓位检测的装仓小车控制系统效果分析 |
5.4.2 装仓小车测距定位网络系统效果分析 |
5.4.3 煤仓入仓过程实时及预测性动态仿真效果分析 |
5.5 本章小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
攻读学位期间取得的研究成果 |
致谢 |
(2)基于S7-300 PLC的油库计算机监控系统设计(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题研究背景 |
1.2 课题研究现状 |
1.2.1 国外研究现状 |
1.2.2 国内研究现状 |
1.3 课题研究意义 |
1.4 论文研究内容 |
第二章 油库计算机监控系统总体方案设计 |
2.1 油库项目介绍 |
2.1.1 油库简介 |
2.1.2 工艺流程原理 |
2.2 油库监控系统需求分析 |
2.2.1 油库监控系统建设需求分析 |
2.2.2 监控系统变量分析与统计 |
2.3 油库监控系统总体设计方案 |
2.3.1 油库监控系统设计依据 |
2.3.2 油库监控系统总体架构 |
2.4 本章小结 |
第三章 油库监控系统硬件设计 |
3.1 油库监控系统硬件架构 |
3.2 监控系统硬件选型 |
3.2.1 上位监控计算机选型 |
3.2.2 PLC选型 |
3.2.3 传感器选型 |
3.2.4 触摸屏选型 |
3.3 控制系统硬件接线设计 |
3.4 监控系统控制柜设计 |
3.5 本章小结 |
第四章 油库系统控制策略研究 |
4.1 油库供油系统控制策略分析 |
4.2 BP神经网络PID控制器设计 |
4.2.1 PID控制器设计 |
4.2.2 BP神经网络设计 |
4.2.3 BP神经网络PID控制系统结构 |
4.3 系统仿真 |
4.3.1 流量控制系统建模 |
4.3.2 控制系统仿真及结果分析 |
4.3.3 MATLAB与组态王通讯方法 |
4.4 本章小结 |
第五章 油库监控系统软件设计 |
5.1 上位监控计算机软件设计 |
5.1.1 组态软件配置 |
5.1.2 登陆界面设计 |
5.1.3 主画面设计 |
5.1.4 实时参数画面设计 |
5.1.5 实时曲线画面设计 |
5.1.6 实时报警画面设计 |
5.1.7 实时报表画面设计 |
5.2 PLC程序设计 |
5.2.1 硬件组态与通讯设置 |
5.2.2 PLC主程序设计 |
5.2.3 PLC子程序设计 |
5.3 触摸屏程序设计 |
5.4 控制系统调试 |
5.5 本章小结 |
第六章 结论与展望 |
6.1 结论 |
6.2 展望 |
致谢 |
参考文献 |
附录 |
攻读学位期间参加科研情况及获得的学术成果 |
(3)鞋面冲孔自动控制系统设计(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题背景及意义 |
1.2 国内外研究现状 |
1.2.1 冲孔机研究现状 |
1.2.2 PLC的应用 |
1.3 课题章节安排 |
1.4 本章小结 |
第二章 控制系统总体设计 |
2.1 系统设计原则 |
2.2 系统设计流程 |
2.3 控制系统总体构架及工作原理 |
2.3.1 信息检测部分的设计 |
2.3.2 图像采集部分的设计 |
2.3.3 控制执行部分的设计 |
2.3.4 人机界面的设计 |
2.3.5 轨迹优化及仿真 |
2.4 本章小结 |
第三章 控制系统硬件选型及设计 |
3.1 信息检测系统硬件选型及设计 |
3.1.1 传感器的分类 |
3.1.2 传感器选型 |
3.2 控制执行系统硬件选型及设计 |
3.2.1 气缸选型及设计 |
3.2.2 电机选型 |
3.2.3 伺服驱动器选型及设计 |
3.2.4 PLC选型 |
3.3 监控系统硬件选型及设计 |
3.3.1 工控机选型 |
3.3.2 触摸屏选型 |
3.4 PLC外部接线图设计 |
3.5 系统平台搭建 |
3.6 本章小结 |
第四章 控制系统软件及人机界面设计 |
4.1 系统软件总体设计及原则 |
4.1.1 软件总体设计 |
4.1.2 软件设计原则 |
4.2 程序开发软件介绍 |
4.2.1 TIA Portal V15软件介绍 |
4.2.2 MCGS组态软件介绍 |
4.3 控制程序设计 |
4.3.1 托板计数方案设计 |
4.3.2 顶升及相机启动方案设计 |
4.3.3 冲孔机冲孔方案设计 |
4.3.4 托板计数清零方案设计 |
4.4 电机工艺参数组态 |
4.4.1 X轴电机工艺组态 |
4.4.2 Y轴电机工艺组态 |
4.5 人机界面设计 |
4.5.1 选型及通讯 |
4.5.2 人机界面功能设计 |
4.5.3 工程下载 |
4.6 本章小结 |
第五章 鞋面冲孔轨迹优化 |
5.1 轨迹优化的目的 |
5.2 遗传算法 |
5.2.1 遗传算法简介 |
5.2.2 遗传算法的基本要素 |
5.3 基于遗传算法鞋面冲孔点轨迹优化 |
5.3.1 冲孔点轨迹目标函数建立 |
5.3.2 冲孔点轨迹优化设计 |
5.4 算法优化分析 |
5.4.1 冲孔点模型描述 |
5.4.2 冲孔点轨迹优化结果 |
5.5 轨迹优化仿真 |
5.5.1 创建工作台 |
5.5.2 设置冲孔轨迹 |
5.5.3 仿真结果对比 |
5.6 本章小结 |
第六章 总结与展望 |
6.1 论文总结 |
6.2 工作展望 |
参考文献 |
致谢 |
(4)真空渗碳生产线智能控制系统的构建与技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 热处理信息化智能化国内外研究现状 |
1.2.2 真空热处理生产线国内外研究现状 |
1.3 技术路线 |
1.3.1 技术路线 |
1.3.2 论文组织架构 |
1.4 本章小结 |
第二章 生产线智能控制系统总体方案设计 |
2.1 真空渗碳生产线的设计 |
2.2 智能控制系统总体方案 |
2.3 PCS系统架构设计 |
2.3.1 PCS系统软硬件构成 |
2.3.2 PCS系统总体架构 |
2.3.3 PCS系统通信网络关键技术的研究设计 |
2.3.4 PCS系统开发平台 |
2.3.4.1 组态软件 |
2.3.4.2 数据库的应用 |
2.4 本章小结 |
第三章 自动转运料车调度问题的研究 |
3.1 自动转运料车控制系统的设计 |
3.1.1 自动转运料车的功能结构 |
3.1.2 自动转运料车控制系统的设计 |
3.2 自动转运料车调度优化的研究 |
3.2.1 自动转运料车调度模型的建立 |
3.2.2 蚁群算法简介 |
3.2.3 自动转运料车优化调度仿真及结果分析 |
3.3 本章小结 |
第四章 PCS系统功能模块的设计 |
4.1 可视化管理模块 |
4.2 设备管理及监测诊断模块 |
4.2.1 生产过程流程控制方法 |
4.2.2 基于功能分析法的设备状态监测诊断研究 |
4.3 质量管理模块 |
4.4 报表及工艺管理模块 |
4.5 本章小结 |
第五章 真空渗碳模拟技术的研究 |
5.1 真空渗碳控制方法 |
5.2 真空渗碳仿真模拟过程 |
5.2.1 饱和值调整法 |
5.2.2 真空渗碳工艺的渗碳模型 |
5.3 渗碳工艺模拟软件搭建与验证 |
5.4 本章小结 |
第六章 智能控制系统的应用与实践 |
6.1 模拟仿真环境与组态软件的整合 |
6.2 生产线智能控制系统的应用与实践 |
6.3 本章小结 |
结论与展望 |
参考文献 |
致谢 |
在学期间发表的学术论文和参加科研情况 |
(5)加热炉钢坯顺序控制系统设计(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景和意义 |
1.2 研究现状 |
1.2.1 国外的研究现状 |
1.2.2 国内的研究现状 |
1.3 主要工作 |
第二章 PLC和步进式加热炉 |
2.1 加热炉工作过程 |
2.2 顺序控制系统 |
2.2.1 装钢系统 |
2.2.2 步进系统 |
2.2.3 出钢系统 |
2.3 PLC概念和选型 |
2.4 本章小结 |
第三章 顺序控制系统设计 |
3.1 基本设备 |
3.2 顺序控制系统设计 |
3.2.1 装钢机运行控制 |
3.2.2 步进梁的控制 |
3.2.3 辊道控制 |
3.2.4 出钢过程 |
3.3 顺序控制系统设备 |
3.3.1 PLC控制系统配置 |
3.4 本章小结 |
第四章 加热炉控制算法的研究和仿真 |
4.1 PID控制 |
4.2 模糊控制 |
4.3 模糊PID控制器的设计 |
4.4 仿真分析 |
4.5 本章小结 |
第五章 加热炉控制系统设计 |
5.1 脉冲燃烧控制技术 |
5.2 脉冲时序燃烧控制 |
5.3 加热炉温度控制 |
5.4 温度控制系统设计 |
5.5 温度执行器 |
5.6 压力控制 |
5.7 本章小结 |
第六章 组态软件设计 |
6.1 软件总体设计 |
6.2 建立组态系统 |
6.3 上位机监控软件Win CC控制界面设计 |
6.4 控制系统监控显示 |
6.5 本章小结 |
第七章 总结 |
参考文献 |
致谢 |
(6)城市排水泵站水泵群的调度优化与智能控制系统的设计与实现(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 国内研究现状 |
1.2.2 国外研究现状 |
1.3 本文研究内容及章节安排 |
1.3.1 研究内容 |
1.3.2 章节安排 |
第二章 基础知识和相关技术 |
2.1 SWMM雨洪管理模型软件 |
2.1.1 SWMM简介和暴雨模型 |
2.1.2 基于SWMM软件的流量演算方式 |
2.2 基于组态技术的SCADA系统 |
2.2.1 组态技术 |
2.2.2 SCADA系统 |
2.3 多层前向神经网络 |
2.3.1 多层前向神经网络拓扑结构 |
2.3.2 BP算法 |
2.4 粒子群优化算法 |
2.4.1 粒子群优化算法原理 |
2.4.2 粒子群优化算法流程 |
2.5 分布式仿真平台 |
2.5.1 分布式仿真平台简介 |
2.5.2 分布式仿真平台程序设计 |
第三章 基于积水量预测的城市排水系统泵群调度优化方法 |
3.1 基于SWMM的积水量计算研究 |
3.1.1 天气预报数据的在线获取 |
3.1.2 基于SWMM的积水量计算参数的设置 |
3.1.3 基于SWMM的积水量计算 |
3.2 基于神经网络的积水量预测方法研究 |
3.2.1 基于BP神经网络的积水量预测方法 |
3.2.2 基于PSO算法和前向神经网络的积水量预测方法 |
3.2.3 基于DSP-PSO算法和前向神经网络的积水量预测方法 |
3.3 城市排水泵站水泵群调度方法研究 |
3.3.1 基于PSO算法的水泵群调度方法 |
3.3.2 基于DSP-PSO算法的水泵群调度方法 |
3.4 实验结果与分析 |
3.4.1 实验设置 |
3.4.2 结果与分析 |
3.5 本章小结 |
第四章 城市排水系统的三层控制模型设计 |
4.1 城市排水系统三层控制模型架构 |
4.2 三层控制模型中数据交换方法的设计与实现 |
4.2.1 基于组态技术的本地SCADA层与控制层PLC通信 |
4.2.2 基于数据库技术的应用层与本地SCADA层通信 |
4.2.3 城市排水系统中网络延迟现象对数据交换的影响与对策 |
4.3 实验结果与分析 |
4.3.1 实验设置 |
4.3.2 结果与分析 |
4.4 本章小结 |
第五章 城市排水泵站智能控制系统的设计与实现 |
5.1 系统概述 |
5.1.1 系统需求 |
5.1.2 系统架构 |
5.2 系统设计 |
5.2.1 数据库设计 |
5.2.2 控制网络设计 |
5.2.3 本地SCADA系统设计 |
5.2.4 数据展示与智能决策程序设计 |
5.3 系统实现 |
5.3.1 PLC自动化程序实现 |
5.3.2 本地SCADA系统实现 |
5.3.3 数据展示与智能决策应用实现 |
5.4 本章小结 |
第六章 总结与展望 |
6.1 总结 |
6.2 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(7)水源热泵自适应控制系统设计与实现(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 引言 |
1.2 研究背景 |
1.2.1 水源热泵的发展现状 |
1.2.2 研究意义 |
1.2.3 研究目标及内容 |
1.3 研究思路和方法 |
1.3.1 研究思路 |
1.3.2 研究方法 |
1.4 研究框架及技术路线 |
第2章 开发工具及相关技术简介 |
2.1 自适应控制方法 |
2.2 工控机技术简介 |
2.3 可编程控制器技术 |
2.4 现场总线及工业以太网通讯技术 |
2.4.1 现场总线技术 |
2.4.2 工业以太网技术 |
2.5 Wincc组态软件 |
2.6 MySQL数据库技术 |
第3章 需求分析与模型辨识 |
3.1 控制系统需求分析 |
3.2 水源热泵系统综合分析 |
3.2.1 水源热泵系统概述 |
3.2.2 水泵性能分析 |
3.2.3 热泵机组性能分析 |
3.2.4 热泵机组能效分析 |
3.2.5 系统最优运行工况分析 |
3.3 水源热泵机组优化控制 |
3.3.1 自适应控制方法 |
3.3.2 系统PID模糊控制实现 |
3.4 设计原理与要求 |
3.4.1 设计原理 |
3.4.2 关键问题 |
3.4.3 设计规范及要求 |
第4章 系统软硬件设计与实现 |
4.1 系统硬件架构 |
4.2 硬件实现方式 |
4.2.1 硬件配置及组成 |
4.2.2 控制系统硬件平台 |
4.2.3 控制功能实现 |
4.3 系统软件设计与实现 |
4.3.1 控制系统功能 |
4.3.2 监测管理系统功能 |
4.4 PLC控制系统 |
4.4.1 硬件组态实现 |
4.4.2 软件编程实现 |
4.5 自适应控制实现 |
4.5.1 自适应控制算法 |
4.5.2 负荷预测控制 |
4.5.3 控制效果 |
4.6 数据库系统 |
4.6.1 数据表的创建 |
4.6.2 数据表的存储 |
第5章 系统测试与运行 |
5.1 系统测试概要 |
5.1.1 功能模块测试分解 |
5.1.2 测试内容及步骤 |
5.2 系统测试用例 |
5.3 系统功能测试 |
第6章 结论 |
6.1 取得成果 |
6.2 结论及感受 |
参考文献 |
致谢 |
(8)焚烧炉SCR烟气脱硝系统研究与开发(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 课题研究背景及意义 |
1.2 烟气脱硝技术的现状 |
1.2.1 脱硝技术方法 |
1.2.2 SCR脱硝技术国内外研究现状 |
1.3 氨气流量系统研究现状与发展趋势 |
1.3.1 氨气流量系统研究现状 |
1.3.2 发展趋势 |
1.4 论文研究内容和章节安排 |
第二章 SCR烟气脱硝系统工艺分析及控制方法 |
2.1 SCR脱硝反应原理 |
2.2 脱硝工艺流程及子系统介绍 |
2.2.1 SCR脱硝系统工艺布置 |
2.2.2 还原剂供应系统组成 |
2.2.3 SCR脱硝系统介绍 |
2.3 影响SCR脱硝效率的因素分析 |
2.4 脱硝系统中常用的喷氨控制方式 |
2.4.1 固定摩尔比控制方式 |
2.4.2 出口NO_x浓度定值控制方式 |
2.4.3 传统串级PID控制喷氨系统 |
2.5 本章小结 |
第三章 神经网络预测模型和喷氨控制系统研究 |
3.1 神经网络算法和理论介绍 |
3.1.1 GRNN神经网络结构 |
3.1.2 GRNN神经网络预测算法 |
3.2 GRNN神经网络预测NO_x浓度模型 |
3.2.1 数据采集与处理 |
3.2.2 神经网络预测NO_x浓度模型 |
3.2.3 仿真结果及分析 |
3.3 优化喷氨控制系统设计 |
3.3.1 优化喷氨控制系统的必要性 |
3.3.2 优化喷氨控制系统结构设计 |
3.3.3 优化喷氨控制仿真结果及分析 |
3.4 本章小结 |
第四章 SCR烟气脱硝系统硬件设计 |
4.1 SCR脱硝系统总体设计 |
4.1.1 SCR脱硝系统功能设计 |
4.1.2 SCR脱硝系统设计流程 |
4.2 SCR脱硝系统硬件设计 |
4.2.1 下位机 |
4.2.2 上位机 |
4.2.3 现场仪表和执行机构 |
4.2.4 控制柜设计 |
4.3 网络通讯设计 |
4.3.1 系统网络通讯组态设计 |
4.3.2 WinCC与 PLC的通讯设计 |
4.4 本章小结 |
第五章 SCR烟气脱硝系统软件开发 |
5.1 系统软件总体架构设计 |
5.2 控制系统程序开发 |
5.2.1 Step7 编程软件介绍 |
5.2.2 关键工艺控制程序 |
5.3 监控画面组态 |
5.3.1 WinCC监控软件介绍 |
5.3.2 监控系统功能 |
5.3.3 监控系统组态 |
5.4 预测模型在SCR脱硝系统的实现 |
5.4.1 预测模型与脱硝系统数据交互实现 |
5.4.2 预测模型在脱硝系统硬件设计实现 |
5.4.3 运行效果及分析 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 课题总结 |
6.2 课题展望 |
参考文献 |
发表论文和参加科研情况说明 |
致谢 |
(9)基于水质软测量的污水处理监控系统设计与研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 污水处理监控系统研究现状 |
1.2.2 水质软测量技术研究现状 |
1.3 论文主要研究内容 |
第二章 污水处理过程工艺分析 |
2.1 污水处理基本方法 |
2.2 污水处理水质指标 |
2.3 工艺单元控制需求及水质影响分析 |
2.3.1 预处理单元 |
2.3.2 生化处理单元 |
2.3.3 深化处理单元 |
2.3.4 污泥处理单元 |
2.4 本章小结 |
第三章 基于PSO-BP神经网络的水质软测量建模研究 |
3.1 软测量技术 |
3.1.1 软测量技术概述 |
3.1.2 软测量主要步骤 |
3.2 水质软测量理论概述 |
3.2.1 主成分分析法 |
3.2.2 BP神经网络理论 |
3.2.3 粒子群优化算法 |
3.3 PSO-BP软测量建模研究与仿真 |
3.3.1 辅助变量初选 |
3.3.2 数据采集与预处理 |
3.3.3 辅助变量降维 |
3.3.4 软测量模型建立及仿真 |
3.4 本章小结 |
第四章 污水处理监控系统硬件设计 |
4.1 系统总体方案设计 |
4.1.1 系统功能分析 |
4.1.2 监控系统结构设计 |
4.2 监控系统硬件设计 |
4.2.1 现场仪表 |
4.2.2 下位机 |
4.2.3 控制柜 |
4.2.4 上位机 |
4.3 网络通信设计 |
4.3.1 控制站与监控层通信 |
4.3.2 控制站与控制站通信 |
4.3.3 控制站与现场设备层通信 |
4.4 本章小结 |
第五章 污水处理监控系统软件开发 |
5.1 系统软件总体架构 |
5.2 下位机控制方案 |
5.2.1 硬件组态设置 |
5.2.2 控制模式 |
5.2.3 控制程序开发 |
5.3 上位机监控组态 |
5.3.1 上位机与控制站通讯 |
5.3.2 上位机监控软件总体设计 |
5.3.3 上位机监控系统功能组态 |
5.4 水质软测量模型实现 |
5.4.1 组态王与MATLAB通信方式 |
5.4.2 组态王与MATLAB通信实现 |
5.4.3 组态王与Access数据库通信实现 |
5.4.4 软测量效果及分析 |
5.5 本章小结 |
第六章 总结与展望 |
6.1 课题总结 |
6.2 课题展望 |
参考文献 |
发表论文和参加科研情况说明 |
致谢 |
(10)集散控制在火电厂除氧器水位控制中的应用(论文提纲范文)
致谢 |
摘要 |
abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 除氧器水位控制研究现状 |
1.3 本文研究内容及章节安排 |
2 除氧给水控制概述 |
2.1 除氧系统结构及工艺流程 |
2.2 除氧器水位控制系统 |
2.3 本章小结 |
3 控制策略分析 |
3.1 几种常用控制方案 |
3.2 控制方案选择 |
3.3 各种工况之间的互相切换与跟踪 |
3.4 系统静态实验 |
3.5 本章小结 |
4 除氧器水位集散控制系统的软硬件设计 |
4.1 电厂控制系统的发展及特点 |
4.2 科远DCS介绍 |
4.3 除氧器水位DCS系统硬件设计 |
4.4 除氧器水位DCS系统软件设计 |
4.5 本章小结 |
5 除氧器水位集散控制算法研究 |
5.1 常规PID控制算法 |
5.2 常规PID控制局限性及解决策略 |
5.3 模糊PID算法在除氧器水位控制中的应用 |
5.4 模糊PID 控制与常规PID 控制在仿真效果与实际应用结果比较 |
5.5 本章小结 |
6 总结 |
参考文献 |
作者简历 |
学位论文数据集 |
四、结合组态软件的仿真优化技术(论文参考文献)
- [1]选煤厂块煤自动入仓关键技术研究与实现[D]. 赵亚坤. 太原理工大学, 2021(01)
- [2]基于S7-300 PLC的油库计算机监控系统设计[D]. 乔艳丽. 西安石油大学, 2021(09)
- [3]鞋面冲孔自动控制系统设计[D]. 薛春旺. 东华大学, 2021(09)
- [4]真空渗碳生产线智能控制系统的构建与技术研究[D]. 凡占稳. 机械科学研究总院, 2021(01)
- [5]加热炉钢坯顺序控制系统设计[D]. 顾培耀. 扬州大学, 2021(08)
- [6]城市排水泵站水泵群的调度优化与智能控制系统的设计与实现[D]. 施璇. 安徽建筑大学, 2021(08)
- [7]水源热泵自适应控制系统设计与实现[D]. 宗嘉财. 兰州理工大学, 2021(01)
- [8]焚烧炉SCR烟气脱硝系统研究与开发[D]. 薛培. 天津工业大学, 2021(01)
- [9]基于水质软测量的污水处理监控系统设计与研究[D]. 于洋. 天津工业大学, 2021(01)
- [10]集散控制在火电厂除氧器水位控制中的应用[D]. 杜思诚. 中国矿业大学, 2020(07)