一、掘进工作面岩体裂隙弱面对掏槽孔爆破的影响与弱面的利用(论文文献综述)
刘伟[1](2021)在《高效消焰剂型安全高威力水胶炸药爆炸性能及破岩机制研究》文中提出当前及未来相当长时间内,煤炭依然是我国主要的一次消费能源,煤矿硬岩巷道掘进的主要施工方法依然是钻爆法。实现硬岩巷道安全高效爆破掘进的根本有效途径是提高炸药威力以及提高爆炸能量利用率。本文针对有瓦斯爆炸危险的硬岩巷道掘进,研制了含KCl、NH4Cl复合消焰剂的安全高威力水胶炸药,并对炸药性能进行了测试和评价。分析了炸药由凝聚态到气态爆轰产物再到对介质做功的能量转换过程,推导了能量(功率)的传递效率。炸药爆炸是一高功率做功过程,其功率由装药密度、爆速、爆热等因素决定,在传输过程中受到自身绝热指数以及介质与炸药波阻抗比值的影响。根据C-J理论,由凝聚态生成气态爆轰产物,该过程的能量传递效率由炸药的等熵绝热指数决定,能量传递效率随着绝热指数的增大而增大。爆轰产物对介质的作用过程,能量传递效率由炸药和岩石介质的波阻抗决定,随着介质与炸药波阻抗比值的增大,能量传递效率增大。建立了含高效消焰剂的安全高威力水胶炸药配方设计数学模型,在现有二级和三级煤矿许用水胶炸药配方的基础上,优选NaCl、KCl、NH4Cl三种高效消焰剂替代三级水胶炸药中的CaCO3,研究了三种消焰剂对爆热、爆容、爆温的影响规律。NaCl和KCl两种消焰剂,对爆容影响较大,而NH4Cl对爆温抑制性较佳,对爆容影响较小。在此基础上设计了7种安全高威力水胶炸药配方。通过对各配方进行可燃气体安全测试、爆炸性能及做功能力的实验研究,确定了含KCl、NH4Cl复合消焰剂的最优安全高威力水胶炸药配方。经实验室试验及权威机构检测,新型安全高威力水胶炸药爆炸性能达到二级煤矿许用水胶炸药技术要求,可燃气体安全性达到三级煤矿许用水胶炸药技术要求。采用差分进化法及γ律状态方程,建立了水胶炸药的JWL状态方程。采用ANSY/LS-DYNA动力有限元软件建立单孔爆破数值模型,在相同介质及装药条件下,对三种炸药的爆破破碎效果进行了模拟,通过结果比较,安全高威力水胶炸药在压碎圈及裂隙圈指标上均优于传统三级水胶炸药,接近二级炸药水平,试验结果也验证了拟合参数的合理性。通过建立直孔掏槽爆破二维及三维数值模型,研究了空孔效应对直孔掏槽效果的影响。二维数值模拟结果表明,有空孔的条件下,爆炸应力波在空孔周围形成反射拉伸波,与爆炸应力波叠加,岩石在反射卸载作用下发生拉伸断裂,爆破形成的槽腔近似成菱形;在没有空孔的条件下,应力波的汇聚叠加,使掏槽区域内的岩石受压破坏,消耗了大部分爆炸能量,形成近似“十字形”空腔。综合比较,有空孔的条件下,形成的槽腔体积更大,掏槽区域内岩石破碎更加彻底。通过建立带中心空孔的直眼掏槽三维数值计算模型,模拟发现炮孔周围的岩石受到爆炸应力波的压缩作用和沿应力波传播方向的剪切作用,同时,由于空孔的存在,造成应力波发射拉伸,岩石在压缩、剪切、拉伸的共同作用下破坏,装药孔之间形成环形裂隙。进行了安全高威力水胶炸药及掏槽参数优化的现场应用试验,并对爆破参数进行了优化结果表明:(1)采用中心直孔加楔形掏槽的掏槽方式,合理的爆破参数,可以提高炮孔利用率,改善破碎效果;(2)在巷道断面、岩石性质、材料消耗一致的条件下,安全高威力炸药的循环进尺、炮孔利用率、材料消耗均优于三级,与二级炸药的爆破效果接近。图54表36参125
郑强强[2](2021)在《动载作用下损伤砂岩的力学特性与破裂特征》文中提出与未受扰动的岩体相比,受人类采掘活动的影响,赋存于自然界中的岩体通常处于不同程度的损伤状态。损伤岩体内部随机分布不同尺度、规模、产状的节理和裂隙,这些弱面劣化岩体的内部结构,同时也削弱了岩体的强度。鉴于此,对岩土工程中岩体的工程设计、稳定性分析和解危措施,也与未受扰动的岩体有所不同。虽然,破岩工作机械化程度,随着技术的革新不断提升,但部分机械作业不能适应的区域仍采用爆破破岩。爆破作业诱发的爆破震动和冲击波,影响临近岩体的稳定性,不仅给工程安全埋下隐患,也威胁施工人员的生命安全。因此,研究动载作用下损伤岩体的力学特性和破裂特征,对安全生产和防护有着重要的意义。本文以损伤砂岩为研究对象,基于声发射和延时双差层析成像技术,分析受载砂岩内的损伤程度、破裂模式和速度结构演化。采用不同上限的循环静载作用于砂岩,并用CT扫描成像表征砂岩的损伤程度。然后,采用高速摄像和分离式霍普金森压杆,对不同损伤程度的砂岩试件开展冲击动力学试验。探究冲击荷载作用下损伤砂岩的强度变化、能量演化、裂纹扩展和破碎特征等问题。最后,采用工业CT扫描技术,分析爆炸荷载作用下损伤砂岩的裂纹扩展和破裂特征。得到以下结论:以声发射撞击比HR表征受载砂岩的损伤程度,并构建能定量描述包括原生裂隙压密闭合阶段和峰后阶段的受载全过程的损伤力学模型。依据监测到的声发射信号特征,将砂岩的受载过程依次划分为初始撞击阶段、撞击稳定阶段、撞击失稳阶段,这三个阶段的破裂模式依次是以剪切破坏、张拉破坏和剪切破坏为主。考虑岩体的非均质性,采用延时双差层析成像技术,反演不同应力水平下,受载砂岩任一截面的速度结构。速度结构随着荷载的增加而增大,岩石的损伤也逐渐增加,在破坏失稳阶段增长率和损伤程度都达到最大。此外,在受载砂岩进入塑性阶段后,其内部存在小部分区域受“隔离状态”的岩块,在裂隙的隔离和岩石扩容的综合作用下,岩块在破坏失稳阶段仍出现速度结构增加的现象。砂岩的损伤弱化了其动态力学强度。在冲击荷载的压缩和劈裂作用下,随着损伤程度的增大,初次起裂裂纹的数量、长度和宽度都增加,损伤砂岩的破碎程度和破碎岩块的动能也都有所增加。而当砂岩的损伤程度一定时,损伤砂岩初次起裂裂纹的数量、长度和宽度以及破碎程度、破碎岩块动能、压剪区域的力学显现等,都随着冲击气压的增加而增大。在冲击荷载劈裂拉伸作用下,杆-岩接触面的压剪区域的破碎范围和程度,随着损伤程度和冲击气压的增大而增加。冲击荷载作用下,砂岩的耗能占比,随着砂岩损伤程度和冲击气压的增大,都呈现出指数函数增大的规律。爆炸荷载作用下,损伤砂岩底部表面裂纹的扩展范围、裂隙宽度和数量,都随砂岩初始损伤程度的增加逐渐增大。上部爆破漏斗和下部砂岩裂隙的尺寸,也随着损伤程度的增加而增大。由CT成像的试验结果可知,爆炸荷载作用下砂岩内的损伤程度、损伤区域、裂隙的尺度和破裂程度,都随着初始损伤程度的增加而逐渐增大,且沿平行于边长方向贯穿裂缝的宽度和长度,也随着损伤程度的增加而增大。受循环静载作用时的端部套箍作用和砂岩尺寸效应的影响,爆炸荷载作用下,损伤砂岩内贯穿炮孔中心直至砂岩试件边界的裂隙,都是沿着静载的加载方向产生。图[92] 表[17] 参[278]
邰阳[3](2021)在《坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律》文中研究表明坚硬顶板临空巷道变形破坏严重是煤矿最为常见的强矿压问题之一,定向造缝切顶卸压是有效的控制手段。目前对切顶工作面覆岩三维破断特征的研究尚属空白,更缺乏一种揭示采场覆岩三维破断运移及应力场演化规律的研究方法,因此难以准确掌握覆岩三维破断运移与采场矿压规律的内在联系。此外,现有造缝切顶技术难以实现裂缝面的定向和连续。为此,论文提出了一种基于泰森随机多边体单元理论的三维岩层垮落数值模拟新方法,并结合弹性薄板小挠度理论,分析了造缝切顶对采空区覆岩三维破断特征、结构特征以及采场应力分布特征的影响,揭示了切顶工作面应力场演化规律及机制,研发了坚硬顶板定向精准造缝卸压技术,优化了造缝工艺流程及参数,并在塔山矿8311工作面成功进行了工业试验,论文取得如下结论及创新点:(1)针对采场三维岩层破断运移过程和应力场演化规律难以掌握问题,结合采场覆岩结构、三维板结构和岩石破断机理,提出了基于泰森随机多边体单元理论的三维岩层垮落数值模拟新思路,开发了三维岩层垮落新程序,并从多个层面验证了其可靠性,为研究覆岩三维破断运移规律提供一种新的方法。(2)基于弹性薄板小挠度理论,建立了固支、简支和自由9种组合边界条件下坚硬岩层三维破断力学模型,探明了切顶方式对基本顶初次破断和周期破断规律的影响,揭示了切顶改变基本顶破断特征控制采场强矿压的机理。(3)基于开发的三维岩层垮落新程序,掌握了基本顶破断与采场矿压强的关系,获得了“边界悬板+中部不规则堆积+上部铰接板”的采空区覆岩三维结构特征及采场矿压分布规律,揭示了切顶改变覆岩破断特征诱发采场应力场演化的规律。(4)揭示了坚硬顶板定向造缝切顶煤柱卸压机理,确定了岩层切割范围,优化了造缝工艺流程及参数,首次成功实施了链臂锯及复合爆破定向连续造缝切顶,有效的降低了煤柱应力。(5)提出了采空区稳定距离的确定方法,探明了增加切顶深度可以加快采空区稳定的规律,揭示了采空区侧煤柱应力“双峰值”显现机理,为坚硬顶板小煤柱开采的掘进时机和巷道布置以及无煤柱开采临时支护设备回撤距离的确定提供了理论依据。论文有图132幅,表22个,参考文献216篇。
乔国栋[4](2020)在《爆破扰动正断层区域煤岩破坏特征及其对瓦斯突出的影响》文中研究说明煤与瓦斯突出是煤矿生产中一种严重的动力灾害,主要发生在地质构造破坏带。爆破技术在煤矿生产中的应用越来越广泛,然而,在实际的应用过程中,当爆破应力波扰动到地质构造区域的煤岩,容易诱发煤岩瓦斯动力灾害。为深入探讨煤矿井下爆破作业扰动正断层构造区域煤岩的稳定性问题,通过搭建爆破模拟试验平台,进行正常煤层和发育有正断层煤层的爆破相似模拟试验,结合数值模拟对比分析了试样的裂纹扩展、应力变化和煤岩破坏规律;根据试验结果结合事故案例从理论上分析了正断层构造区域爆破扰动影响下煤与瓦斯突出动力灾害发生的过程和原因。取得的主要结论如下:(1)受正断层上下盘煤层的影响,炮孔垂直方向上最大拉应力是水平方向上的1.39倍;含断层试样中炮孔垂直方向上的最大拉应力是正常煤层试样的1.17倍。对比发现含断层试样在炮孔垂直方向上的应力曲线变化更为复杂、应力峰值更大、作用时间更长。(2)受爆破应力的影响,两试样表面的裂纹扩展状态存在明显不同,正常煤层试样裂纹发育呈现以炮孔为中心向外辐射状;含正断层试样中炮孔和正断层上盘煤层的连线方向上的裂纹数量及密度明显多于炮孔其他方向。(3)通过超声波CT检测爆破前后的试样可知,正常煤层试样中,过煤层的检测面超声波波速下降程度较小,下降了 18.78%;含断层试样中,过正断层下盘煤层的检测面超声波波速下降了 26.40%,过正断层上盘煤层的检测面超声波波速下降了 35.01%,对比可知,含断层试样中煤层受损情况比正常煤层试样受损情况更为严重。(4)数值模拟发现两模型的煤层与岩层的交界处有明显应力集中,而在正断层模型中,受正断层构造影响,在煤层下方炮孔周围出现了明显的环形应力集中。(5)结合试验结果对滴道盛和煤矿立井“4·4”较大煤与瓦斯突出事故案例分析,认为事故发生区域具备煤与瓦斯突出发生的基本物质基础及动力条件,爆破掘进过程中爆破产生的裂纹向正断层上下盘煤层发育,岩层裂隙与煤层裂隙、爆破孔周围裂隙相互贯通;爆破扰动促使煤层吸附瓦斯解析,破碎的煤岩为瓦斯动力灾害的发生提供了弱面和瓦斯流动通道,风煤钻施工扰动影响到正断层构造带爆破作用区域,是该类煤与瓦斯突出事故发生的重要原因。图[40]表[12]参[77]
张旭[5](2020)在《隧道光面爆破施工超欠挖影响因素分析及控制技术研究》文中研究指明在目前我国隧道的施工建设中,光面爆破施工是最主要的方法,使用光面爆破技术开挖时,超欠挖现象不可避免,超欠挖会显着增加隧道建设的成本并严重影响施工安全,所以对超欠挖控制措施的研究十分必要。引起隧道超欠挖的原因是复杂的,这些因素包括围岩地质条件的影响、钻孔设备及火工产品的影响、光爆理论及施工技术的限制、爆破设计方案不合理等,这些因素都会在一定程度上影响光面爆破的成型效果。本文依托新建京张铁路八达岭隧道/长城站爆破工程,并参照诸多学者对影响超欠挖因素的现场试验研究,结合理论分析和数值模拟,在以下几个方面进行了研究,并得到了如下结论:(1)依托新建京张铁路八达岭隧道/长城站爆破工程中的爆破设计方案,对完整岩体的光面爆破进行数值模拟,结合众多实际工程中实测超欠挖数据可以得出:在实际施工中,周边孔的开孔轮廓线应当向设计轮廓线内偏离适当距离,这样可以使爆破后的隧道轮廓线与设计轮廓线更吻合。(2)通过对存在节理的围岩进行光面爆破的数值模拟,结合理论分析和一些学者的现场试验得出:当两炮孔之间存在节理时,节理与炮孔连线的夹角、节理的强度和宽度都会对爆破后的超欠挖现象造成影响。(3)风动凿岩机和凿岩台车由于自身结构的不同,适用的范围也有差异。凿岩台车施工机械化程度高,掘进速度快,极大地释放了劳动力,已经在很多场合逐渐取代人工手风钻;但是由于台车体积大,所需的操作空间远大于风钻钻孔,在一些场合应用会造成超欠挖现象,此时使用风钻钻孔的优势更大。(4)通过理论分析,结合一些学者的现场试验,针对周边孔间距、布置空孔、装药轴向不耦合系数对超欠挖的影响进行数值模拟得出:在爆破设计中选择合适周边孔间距、在适当位置布置空孔、选择合理的轴向不耦合装药系数都会很好的改善爆破效果,减少爆破后的超欠挖现象。
李甲[6](2020)在《阳煤五矿小断面岩石巷道钻爆法掘进技术研究》文中研究表明为了解决阳煤五矿小断面岩巷钻爆法掘进面临的单进水平低、工效低而导致采掘衔接紧张的问题,针对岩巷断面、岩性等的具体情况,结合相关理论和岩巷实际情况,形成以岩石物理力学测试为基础,数值模拟为参考,掏槽爆破技术和支护技术为核心,优化施工组织为辅助的小断面岩巷掘进工艺,提高单循环进尺和月进尺水平,降低劳动强度,简化施工工序,提高工效。取得的主要成果如下:(1)通过对试验巷道围岩岩样采集,并对岩样进行单轴抗压强度测试试验、单轴抗拉强度试验以及三轴压缩试验,通过岩石动态力学参数测试表明,岩石动态抗压和抗拉强度均增长20%左右,测试结果为数值模拟奠定基础。(2)采用ABAQUS数值软件分别对楔形掏槽、楔直复合、双楔形掏槽爆破进行了数值模拟研究,得到不同掏槽爆破时爆炸应力场的分布特征,数值模拟表明楔直复合掏槽对岩石破碎的作用优于楔形掏槽和双楔形掏槽。同时支护设计时,采用理论计算与FLAC3D数值模拟相结合的方法,能够为方案优化提供参考和依据。(3)通过工程应用实践表明,从爆破方案、支护方案、劳动组织等方面进行优化,能够取得单循环进尺平均2.15m,日进尺达到6.4m左右,实现了月进尺160m以上的掘进目标,月进尺较原施工方案提高33%,为阳煤五矿同类型岩巷掘进提供参考和借鉴。该论文有图61幅,表22个,参考文献93篇。
冯占杰[7](2020)在《寺河矿覆岩定向水力压裂控制地表沉陷范围研究》文中认为煤矿地下开采对其采动影响范围内的建(构)筑物会造成影响或破坏,采用覆岩定向水力压裂改变岩层与地表移动模式,控制采动影响范围是保护地表建(构)筑物的措施之一。本文以寺河煤矿5304工作面地质采矿条件为基础,通过建立力学模型分析了断层两侧岩块滑移的影响因素,采用3DEC数值模拟软件建立了数值模型,针对覆岩弱面对采煤沉陷发育规律的影响进行模拟研究,详细分析了不同弱面类型对采煤沉陷规律的影响,验证了构造弱面对覆岩移动及地表沉陷的阻隔效应,提出并实施了井下覆岩水力压裂控制地表沉陷范围的技术。主要获得以下成果:(1)针对实测数据,总结寺河煤矿5304工作面采后地表移动变形规律,确定该工作面地质采矿条件下的地表概率积分法各预计参数,并根据概率积分法预计计算得出工作面采后地表下沉、倾斜、水平变形、水平移动的变化量,确定工作面开采对地表建筑物的移动变形影响情况。(2)根据采空区上覆岩层位移场的分布特征,将上覆基岩分为三个不同的采动影响区:岩层未扰动区、“三角滑移”区和“岩层垮落”区,同时指出“三角滑移”区地面建筑物所受工作面采动影响最大,得出该区域的上覆岩层破断运动规律以及对地表沉陷范围的影响特征。(3)基于寺河矿煤层赋存地质条件,采用3DEC数值模拟技术研究构造弱面对上覆岩层移动变形规律及地表沉陷的影响特征,得到不同弱面类型条件下对地表移动变形控制效果的影响规律,并提出通过覆岩定向水力压裂工艺,人为控制覆岩垮落方式,借助人造弱面对岩层移动传播的阻隔作用,控制覆岩水力压裂区域地表采动影响范围的思路。(4)基于上述研究成果,以53041巷为试验区域进行井下定向水力压裂试验,综合地表岩移观测数据、数值模拟结果与概率积分法预计结果表明地表形成水力压裂侧采动影响范围缩小31m的偏态下沉盆地,验证了覆岩定向水力压裂控制地表沉陷范围的有效性。
周圣国[8](2020)在《煤系地层隧道开挖控制爆破技术研究》文中研究指明山区隧道中煤系地层隧道较为常见,煤系地层隧道地层条件复杂,施工过程中瓦斯气体泄露、爆炸以及煤层突出、挤出、压出等地质灾害对人员及设备安全造成了潜在的威胁,增大了施工风险。因而制定安全可靠的煤系地层隧道掘进爆破施工技术方案,避免爆破作业引起煤与瓦斯突出等事故,对确保施工安全高效地进行具有实际的经济意义。本文以西藏拉萨至泽当快速路S5线圭嘎拉隧道工程为依托,运用岩石力学、爆炸动力学、结构力学、弹性力学、煤与瓦斯突出理论、矿山压力理论、控制爆破理论、现场试验和数值分析方法对煤系地层隧道开挖控制爆破技术进行了研究,得到以下研究成果:隧道石门揭煤突出的主导因素为爆破动载下煤层与岩层裂隙增生、煤层顶底板被压缩和预留岩柱发生蠕变断裂破坏;计算分析不同直径三级煤矿许用乳化炸药在Ⅳ级围岩与煤体中的爆破区域,确定掏槽眼和崩落眼选择较小不耦合系数,光爆眼及煤层中炮眼选择较大不耦合系数。所有炮眼均采用正向起爆装药结构,水炮泥数量为1节;对二阶二段掏槽不同参数的掏槽效率和爆破振动效应进行研究,得到揭煤前全岩断面掏槽中心孔装药直径为32mm、一阶孔垂深为1.2m、一阶孔倾角为?70;对石门揭煤直眼掏槽不同参数的石门掏槽效率、煤层揭煤深度与煤层及顶板受扰动程度进行研究,得到石门揭煤断面掏槽空孔半径为60mm、炮孔与空孔间距为24cm;针对全岩断面,分析光爆层破碎情况、残存眼痕数和轮廓线外岩体损伤深度,确定周边眼采用切缝药包且其眼距为70cm;针对半煤岩与全煤层断面,考虑瓦斯压力对煤体力学参数的弱化影响,并将其应用于隧道煤层周边眼参数设计,通过数值算例比对分析光爆层破碎情况、周边平整度和轮廓线外煤体损伤深度,得到周边眼间距为40cm、轮廓线偏移距离为20cm、光爆层厚度为50cm,且瓦斯压力为1MPa、2MPa时,煤层爆破损伤深度依次增加19.5%、35.5%。针对圭嘎拉隧道石门揭煤爆破作业,通过数值算例得到预留岩柱爆破损伤深度为0.86m,并运用结构力学推导地应力与煤层瓦斯压力作用下预留最小岩柱安全厚度,得到不同煤层倾角隧道爆破揭煤的预留最小安全岩柱厚度计算式为?[]?hhhhD,maxsin23(10)(28)?;对隧道石门揭煤直眼掏槽爆破微差间隔时间对急倾斜、倾斜和缓倾斜煤层及其顶底板的动力响应进行研究,得到最佳微差间隔时间均为35ms;随着煤层倾角增大,煤层与顶底板振速、加速度和有效应力峰值衰减速度加快,底板动力响应程度大幅提升,煤层与顶板受扰动程度增幅较小,且大倾角煤层与顶底度最为显着;针对揭穿煤板受扰动程层后爆破作业,分析进尺与单段最大起爆药量对隧道衬砌煤层段爆破振动的影响,得到进尺为2m,单段起爆药量不超过27.9kg。给出了圭嘎拉隧道穿煤段全岩断面、石门揭煤断面、半煤岩与全煤层断面爆破孔网参数,并在全岩断面区段进行爆破试验验证了研究成果的合理性;在全岩断面区段进行爆破振动监测,利用最小二乘法对监测数据进行回归分析,得到隧道场地系数K为43.46,振动衰减系数?为1.089;基于HHT法,运用MATLAB对振动信号进行频谱分析,得出爆破振动能量主要集中于1075Hz。
李磊[9](2020)在《采动煤岩体结构效应及其诱冲机制研究与实践》文中提出冲击地压作为煤矿重大灾害之一,一直是采矿科技工作者研究的热点,随着研究的深入,冲击地压致灾机理逐渐丰富,但煤岩体动力灾变是复杂的动力失稳现象,受地质环境、工况条件等众多因素影响,从灾害孕育、启动致发生均表现出明显的非线性和系统失稳特征。很多学者从高应力、强冲倾、大构造等角度进行了研究,但对于煤岩体结构效应及诱冲机理的研究仍处于探索阶段。为此,本文以宏细观变尺度研究手段为基础,首先对国内近年来发生的典型冲击地压事故再统计与分析,从煤岩赋存结构角度出发分析了冲击地压发生的结构演化规律及应力特征,并调研总结了6种具有典型结构特征的冲击地压类型。进而先从煤体结构效应出发,在实验室尺度下利用伺服试验机、CT扫描对不同类型煤样的力学性质与冲击倾向性进行了分析,利用三维重构技术再现煤样内部原生裂隙的分布,在识别主控裂隙的基础上,对试件进行了加载与波速测试,掌握了煤样结构演化与力学行为。在此基础上,通过借鉴粘滑和超低摩擦效应理论,对厚层沉积煤岩结构失稳机理进行了探究,提出结构失稳的内在机制是煤岩界面摩擦力受到接触压力或界面粗糙度影响而非恒定,非稳定滑移诱发煤体能量瞬时释放进而发生冲击地压,简化回采工作面力学模型,对简支梁模型超低摩擦效应进行了验证。同时借助物理模拟试验系统,对厚层沉积煤岩体采动规律进行了相似模拟,分析了正常回采和切顶回采条件下结构和应力演化规律。最后针对西部矿区典型坚硬厚层顶板的矿井条件,利用高压水力切缝技术对工作面切眼顶板进行压裂,掌握工程尺度下控制顶板结构防治诱发冲击地压的工艺工法,有效减少了大面积来压事件。主要结论如下:(1)分析了国内冲击地压事故的分布规律,归纳了典型冲击地压灾害发生的环境条件、破坏特征及诱发因素,从煤岩体结构失稳的角度细化了冲击地压分类,提出3种结构,6种类型:天然构造结构包括断层构造型、褶曲构造型,人工采场结构包括孤岛煤柱型、悬梁顶板型,地质弱面结构包括煤层异常型、煤岩弱面型。(2)从煤体结构效应出发,在实验室尺度下利用伺服试验机、CT扫描对不同类型煤样的力学性质与冲击倾向性进行了分析,利用三维重构技术再现煤样内部原生裂隙的分布,从重构结果得出,力学性质不同的煤岩介质,原生裂隙结构整体特征差异明显,其发育程度与冲击倾向性成反比。无冲击倾向性煤岩,原生裂隙结构发育程度极高,以片状、网状裂隙为主,分布于整个煤岩介质,且连通性强;弱冲击倾向性煤岩,原生裂隙结构发育程度较高,呈片状、条状,在介质中占据了较多空间;强冲击倾向性煤岩,原生裂隙结构发育程度很低,类似“孤岛”状、片状,且片状裂隙多近似水平或垂直态。(3)通过设置层理角度对煤岩冲击倾向性进行研究,得到层理面与加载方向夹角对煤样力学参量影响显着,宏观破坏模式及细观断裂特征存在强烈层理效应。当层理面与加载方向夹角为90°时煤样冲击倾向性最强,0°时次之,45°时最弱。同时煤样声学特征各向异性明显,轴向垂直层理煤样波速比轴向斜交层理煤样高15.1%。(4)借鉴粘滑和超低摩擦效应理论,对厚层沉积煤岩结构失稳机理进行了探究,提出结构失稳的内在机制是煤岩界面摩擦力受到接触压力或界面粗糙度影响而非恒定,即F=μtNt,非稳定滑移诱发煤体能量瞬时释放进而发生冲击地压,建立了回采工作面力学模型,并对简支梁模型超低摩擦效应进行了验证。(5)通过相似模拟对巴彦高勒煤矿3-1煤层在正常开采以及开切眼处人工切顶后开采围岩应力、位移场演化对比,得出正常开采条件下,工作面推进到66m时顶板发生初次垮落,采场上覆岩层空间的位移以向下垮落为主。人工切顶后,当工作面推进到24m时发生初次垮落,随着工作面推进,前方应力测点的应力集中系数先缓慢减小,在顶板垮落后应力急剧增加保持稳定,有效的阻断顶板的应力传递,预防悬梁顶板突然冲击垮落。(6)通过三维地应力场反演分析方法,系统分析了巴彦高勒煤矿工程地质环境,得到了研究区域内矿井原岩应力场类型、大小及分布特征:11盘区为水平主控应力场,最大主应力与自重应力比值在1.44~1.90之间。结合3104工作面顶板岩层厚度、岩层结构及采高等条件,对工作面开切眼实施水力压裂断顶措施,切顶工艺实施后,工作面基本顶初次来压步距平均值为30.93m,与未处理顶板相比初次来压步距减小61.33%。
赵善坤[10](2020)在《采动巷道冲击地压力构协同防控技术研究》文中研究表明深部复杂的工程地质构造环境、较高的工程地质应力环境和大范围高强度集约型开采所引起的工程地质扰动使得冲击地压发生频度和强度明显增加,尤其是陕蒙地区深部厚硬顶板条件下回采工作面双(多)巷布置、宽区段煤柱下,留巷因采动影响冲击地压日趋严重。本文以鄂尔多斯巴彦高勒煤矿11盘区采动巷道为工程背景,采用现场勘察与室内试验、理论分析与数值计算、现场测试与工程实践相结合的研究方法,以采动巷道侧向顶板破断结构和围岩应力环境为切入点,分析了厚硬岩层采动巷道围岩稳定性的主要影响因素,试验模拟研究了高低位厚硬岩层侧向不同断裂位置组合下区段煤柱受力特征,揭示了采动巷道区段煤柱侧向厚硬顶板结构破断特征及应力传递机制,研究了深孔顶板定向水压致裂技术与预裂爆破技术在优化侧向顶板破断结构及控制区段煤柱应力状态的适用性和关键技术参数,建立了采动巷道冲击地压力构协同防控技术体系并在典型冲击地压巷道进行了现场效果检验,取得以下主要结论:(1)提出了采动巷道稳定性多参量综合评价指标,得出了采深大、顶板岩层厚硬、煤岩层均具有冲击倾向性、区段煤柱留设宽度和巷道支护结构不合理是影响陕蒙地区深部采动巷道稳定性的主要因素。(2)利用自行设计的岩层破断回转加载装置和大尺寸煤岩试样,对比分析了采动巷道高低厚硬岩层在区段煤柱上方四种不同破断位置组合下,低位厚硬岩层应变特征、岩层回转倾角及区段煤柱的受力状态,建立了四种不同破断位态组合下顶板全过程载荷计算模型和区段煤柱极限强度计算模型,得出在区段煤柱宽高比一定的条件下,高低位厚硬岩层分别在采空区侧和区段煤柱中部破断是最优结构组合破断方案,给出了基于低位厚硬岩层高度的区段煤柱稳定性判据。(3)高低位厚硬岩层破断分别体现一次、二次采动影响下侧向顶板破断结构对区段煤柱的影响。低位厚硬岩层向上控制高位岩层回转角度、抑制侧向断裂位置向深部发展,向下回转挤压直接顶短臂岩梁,造成区段煤柱采空区侧应力集中,高位厚硬岩层破断形成动载易诱使处于非稳定平衡状态的区段煤柱冲击失稳。(4)“倒直梯形区”和“倾斜块体”是影响采动巷道围岩应力分布及结构稳定的核心。倒直梯形区具有承载上覆岩层重量和传递岩层应力双重作用。倾斜块体一侧以砌体铰接结构支撑上部岩层的重量并作为缓冲垫层吸收上覆高位厚硬岩层破断形成的动压载荷,另一侧与嵌入倒梯形结构区内的对应岩层倾斜铰接,为倒直立梯形提供顶推力,控制低位厚硬岩层上方岩层向采空区侧倾斜,具有控制倒直梯形区扩展和保护区段煤柱的双重作用。(5)提出以优化高低位岩层破断结构,增加高位岩层破断释放弹性能传递损耗,优化区段煤柱尺寸,切断底板能量传递通道,提高巷道吸能让压支护强度,控制区段煤柱应力分布,动态调整各种卸压措施时空组合方案的动压巷道防治理念,制定了吸能让压卸支耦合支护原则和参数选择方案,得出深孔断底爆破配合煤层卸载爆破可有效抑制底板冲击,构建了以“吸能稳构、断联增耗、转移释放、让压阻抗”为核心的采动巷道冲击地压力构协同防控技术体系。(6)采用深浅组合式布孔、炮孔间距为8m时,深孔顶板预裂爆破可有效增加爆破裂隙密度及多向发展的可能性,延长爆破衰减能量作用岩石的时间,致使塑性破坏区范围更加发育,爆破块度更加碎裂均匀,位移场速度变化和有效应力峰值点距离观测点最远,顶板结构控制效果最好。(7)通过改变半圆盘弯曲试件裂纹倾斜角度β,分析裂纹临界应力强度因子曲线和表观位移场演化特征得出,当0°≤β<15°时,裂纹以Ⅰ型断裂为主,水平位移变化快,垂直位移变化相对缓慢,裂纹呈均匀对称分布;当15°≤β≤45°时,裂纹表现为Ⅰ/Ⅱ复合型断裂,但Ⅱ型破裂占主导地位,水平位移量值变化减缓而垂直位移变化增大;当45°<β时,KⅠ和KⅡ均呈下降趋势,裂纹表现为Ⅰ/Ⅱ复合型破裂。当裂纹倾角声接近45°时,可充分发挥地应力的作用使得裂纹同时承受Ⅰ型裂纹张拉作用和Ⅱ型裂纹的错动剪切作用,尤其适用于注水压力有限的工况。(8)当工作面由未断顶区域进入断顶区域或者进出相邻不同断顶结构控制区域时,因人为造成上覆顶板岩层结构运动不协调,应力与能量传递不连续,积聚在上覆厚硬岩层内的弹性变性能释放不均匀或不充分而在局部区域形成积聚,在外载扰动作用下易发生冲击地压。同时,当厚硬顶板微震监测出现“缺震”现象时,具有发生冲击地压的可能。(9)对比压裂前后孔内裂纹的裂隙发育及位置、压裂过程中顶板的煤炮强度和频次以及压裂前后辅回撤通道附近的微震、应力变化发现,相比于深孔顶板预裂爆破,深孔顶板水压致裂在顶板控制效果、现场施工效率、工程量、限制条件以及施工安全性等方面,均优于深孔顶板预裂爆破技术,但深孔顶板预裂爆破技术具有组织时间短、防冲效果见效快的特点,适用于冲击危险区域的应急解危。同时,对于原生裂隙发育的顶板岩层,深孔顶板预裂爆破技术更为适用。
二、掘进工作面岩体裂隙弱面对掏槽孔爆破的影响与弱面的利用(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、掘进工作面岩体裂隙弱面对掏槽孔爆破的影响与弱面的利用(论文提纲范文)
(1)高效消焰剂型安全高威力水胶炸药爆炸性能及破岩机制研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究意义 |
1.2 国内外研究现状 |
1.2.1 煤矿许用炸药 |
1.2.2 硬岩巷道爆破掘进 |
1.3 研究内容和技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
2 炸药性能与破岩相关理论 |
2.1 爆破破岩应力波理论 |
2.1.1 爆炸作用下的岩土破坏作用 |
2.1.2 炮孔孔壁压力计算 |
2.1.3 粉碎区和裂隙区半径的计算 |
2.2 炸药爆破功率及传递理论 |
2.2.1 炸药爆炸功率P_0 |
2.2.2 爆轰产物功率P_j |
2.2.3 介质获取的功率P_m |
2.3 本章小结 |
3 高效消焰剂安全高威力水胶炸药配方设计研究 |
3.1 安全炸药技术理论 |
3.1.1 可燃气体的燃烧与爆炸 |
3.1.2 消焰剂的抑制作用 |
3.2 安全高威力水胶炸药配方设计理论 |
3.2.1 配方设计思路 |
3.2.2 炸药热化学参数计算 |
3.2.3 安全高威力水胶炸药配方设计数学模型 |
3.2.4 基于零氧平衡的配方设计 |
3.2.5 制备工艺 |
3.3 本章小结 |
4 高效消焰剂安全高威力水胶炸药性能测试实验研究 |
4.1 可燃气体安全度测试和做功能力测试 |
4.1.1 实验室可燃气体安全性测试 |
4.1.2 可燃气体安全性权威机构检测 |
4.2 做功能力的权威机构检测 |
4.3 炸药爆速测试 |
4.4 撞击感度测试 |
4.5 热稳定性测试 |
4.6 本章小结 |
5 高效消焰剂安全高威力水胶炸药状态方程参数拟合 |
5.1 水胶炸药爆轰产物状态方程 |
5.2 水胶炸药JWL状态方程参数拟合 |
5.2.1 γ的计算 |
5.2.2 E_0的计算 |
5.2.3 水胶炸药爆速的理论计算 |
5.3 水胶炸药爆破破岩的数值模拟 |
5.3.1 单孔爆破模拟 |
5.3.2 空孔对直孔掏槽爆破效果影响的数值模拟 |
5.4 空孔直眼掏槽的三维数值模拟 |
5.5 本章小结 |
6 高效消焰剂安全高威力水胶炸药硬岩巷道应用试验 |
6.1 试验方案 |
6.2 掏槽优化爆破试验 |
6.2.1 模型设计与制作 |
6.2.2 模型爆破试验过程 |
6.2.3 试验结果及分析 |
6.2.4 爆破方案和爆破参数 |
6.2.5 试验结果 |
6.3 安全高威力炸药与三级炸药应用对比试验 |
6.4 安全高威力炸药与二级炸药应用对比试验 |
6.4.1 爆破方案和爆破参数 |
6.4.2 试验结果 |
6.5 本章小结 |
7 结论与展望 |
7.1 结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
作者简介及读博期间主要科研成果 |
(2)动载作用下损伤砂岩的力学特性与破裂特征(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 岩石损伤的表征 |
1.2.2 损伤岩石的力学性能研究 |
1.2.3 爆炸荷载作用下损伤岩体的破裂特征研究 |
1.2.4 目前研究存在的不足 |
1.3 研究内容与研究方法 |
1.3.1 研究内容 |
1.3.2 研究目标 |
1.3.3 研究方法 |
1.3.4 技术路线 |
2 动态荷载作用下损伤岩体的能量演化与破裂特征理论 |
2.1 受载岩体的损伤表征 |
2.1.1 受载岩体的损伤力学模型 |
2.1.2 受载岩体的速度结构演化 |
2.2 冲击荷载作用下损伤岩体的能量演化 |
2.3 爆炸荷载作用下损伤岩体的破裂特征 |
2.3.1 爆炸荷载作用下岩体的破裂特征 |
2.3.2 爆炸荷载作用下损伤岩体的破裂特征 |
2.4 本章小结 |
3 基于声发射检测受载砂岩的损伤、破裂与速度结构演化 |
3.1 概述 |
3.2 试验方案 |
3.3 试验过程 |
3.3.1 试件的制备 |
3.3.2 砂岩的孔隙率 |
3.4 单轴荷载作用下砂岩的损伤与破裂模式 |
3.4.1 试验装置与试验过程 |
3.4.2 砂岩的强度 |
3.4.3 单轴荷载作用下砂岩的声发射特性 |
3.4.4 单轴荷载作用下砂岩的破裂模式 |
3.4.5 单轴荷载作用下砂岩的量化损伤 |
3.5 单轴荷载作用下损伤砂岩的速度结构演化 |
3.6 循环荷载作用下受载砂岩的声发射信号特征 |
3.6.1 试验设备与试验过程 |
3.6.2 试验结果与分析 |
3.7 本章小结 |
4 冲击荷载作用下损伤砂岩的能量演化与破碎特征 |
4.1 损伤砂岩的冲击动力学试验 |
4.1.1 试件的制备 |
4.1.2 试验装置与试验过程 |
4.2 基于CT扫描砂岩损伤的表征 |
4.3 冲击荷载作用下损伤砂岩的强度变化和能量演化 |
4.3.1 动态应力平衡验证 |
4.3.2 损伤砂岩的动态抗压与劈裂抗拉强度分析 |
4.3.3 冲击荷载作用下损伤砂岩的能量演化 |
4.4 冲击荷载作用下损伤砂岩的裂纹扩展 |
4.4.1 冲击荷载压缩作用下损伤砂岩的裂纹扩展和走势 |
4.4.2 冲击荷载劈裂作用下损伤砂岩的裂纹扩展和走势 |
4.5 冲击荷载作用下损伤砂岩的破碎特征与几何分形 |
4.5.1 冲击荷载作用下损伤砂岩的破碎特征 |
4.5.2 冲击荷载作用下破碎岩块的几何分形 |
4.6 本章小结 |
5 爆炸荷载作用下损伤岩体的破裂特征与CT成像 |
5.1 爆炸荷载作用下损伤砂岩的破裂特征试验 |
5.1.1 试件的制备 |
5.1.2 试验设备与试验过程 |
5.2 损伤砂岩的表征 |
5.3 爆炸荷载作用下损伤砂岩的破裂特征 |
5.4 爆炸荷载作用下损伤砂岩的CT成像 |
5.5 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 创新点 |
6.3 展望 |
参考文献 |
致谢 |
作者简介及在校期间主要科研成果 |
作者简介 |
攻读博士学位期间主要的科研成果 |
(3)坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 工程背景及选题意义 |
1.2 国内外研究现状 |
1.3 主要研究内容及方法 |
1.4 创新点 |
2 基于弹性小挠度薄板理论的基本顶造缝切顶三维破断特征及煤柱卸压机理. |
2.1 基本方程及边界条件 |
2.2 基本顶初次破断特征理论计算 |
2.3 基本顶周期破断特征理论计算 |
2.4 基本顶破断特征汇总 |
2.5 采空区侧煤柱切顶卸压机理 |
2.6 本章小节 |
3 基于泰森多边体单元理论的三维岩层垮落数值计算方法 |
3.1 现有覆岩破断运移研究方法的缺陷 |
3.2 三维岩层垮落模拟方法思路的提出 |
3.3 泰森多边体单元理论 |
3.4 数值模型的构建 |
3.5 数值计算方法的验证 |
3.6 本章小节 |
4 坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律数值分析 |
4.1 坚硬顶板造缝切顶方案 |
4.2 采空区岩层破断特征 |
4.3 采空区覆岩结构特征 |
4.4 采场矿压显现特征 |
4.5 工作面强矿压机理及煤柱卸压机理 |
4.6 应力场演化规律及机制 |
4.7 坚硬顶板切顶范围选取 |
4.8 本章小节 |
5 坚硬顶板定向精准切缝卸压技术及参数优化 |
5.1 复合爆破定向造缝技术及参数优化 |
5.2 链臂锯连续精准切割技术及参数优化 |
5.3 切顶巷道临时支护设备 |
5.4 两种技术优点及适用条件 |
5.5 本章小结 |
6 工程应用 |
6.1 工程背景 |
6.2 链臂锯小煤柱切顶卸压 |
6.3 复合爆破小煤柱切顶卸压 |
6.4 协同切顶无煤柱留巷 |
6.5 本章小结 |
7 结论与展望 |
7.1 主要结论 |
7.2 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(4)爆破扰动正断层区域煤岩破坏特征及其对瓦斯突出的影响(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 选题背景及研究意义 |
1.2 研究现状 |
1.2.1 爆破载荷作用下煤岩破坏特征的研究现状 |
1.2.2 断层和煤与瓦斯突出关系的研究现状 |
1.3 存在的问题 |
1.4 研究内容和技术路线 |
1.4.1 研究内容 |
1.4.2 技术路线 |
2 爆破致裂煤岩机理 |
2.1 爆炸过程分析 |
2.1.1 煤岩内炸药爆炸机理 |
2.1.2 爆炸作用于煤岩过程 |
2.2 爆炸波的作用 |
2.2.1 爆炸波演变过程 |
2.2.2 爆炸波的特性 |
2.3 爆生气体的作用 |
2.4 破坏区的发育 |
2.4.1 破坏区形成机理 |
2.4.2 爆破破坏区的范围计算 |
2.5 本章小结 |
3 爆破扰动正断层相似模拟试验 |
3.1 试验方案及试验装置的构建 |
3.1.1 试验目的 |
3.1.2 试验方案 |
3.1.3 试验装置的构建 |
3.2 相似模拟材料配比 |
3.2.1 试验的相似准则和载荷 |
3.2.2 相似模拟材料试验配比 |
3.3 相似模拟试验过程 |
3.3.1 应变砖制作 |
3.3.2 试样制作 |
3.3.3 爆破试样 |
3.4 爆破相似模拟试验结果分析 |
3.4.1 试样裂纹扩展情况分析 |
3.4.2 应力采集及数据分析 |
3.4.3 超声波CT检测结果分析 |
3.5 本章小结 |
4 爆破扰动正断层数值模拟分析 |
4.1 模型建立 |
4.2 模型各介质状态方程 |
4.2.1 煤岩材料参数 |
4.2.2 炸药状态方程及参数 |
4.3 数值模拟计算结果分析 |
4.4 本章小结 |
5 滴道盛和煤矿立井“4·4”较大煤与瓦斯突出事故案例分析 |
5.1 事故发生地点基本情况介绍 |
5.2 事故发生过程介绍 |
5.3 事故发生原因分析 |
5.3.1 正断层构造影响因素 |
5.3.2 爆破扰动因素 |
5.4 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 创新点 |
6.3 展望 |
参考文献 |
致谢 |
作者简介及读研期间成果 |
(5)隧道光面爆破施工超欠挖影响因素分析及控制技术研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
1.绪论 |
1.1 选题背景及意义 |
1.1.1 选题背景 |
1.1.2 选题意义 |
1.2 国内外研究现状 |
1.2.1 对光面爆破技术的研究现状 |
1.2.2 对超欠挖现象的研究现状 |
1.2.3 已有研究的不足 |
1.3 本文研究内容及研究目标 |
1.3.1 研究内容及目标 |
1.3.2 研究技术路线图及创新点 |
2.光面爆破作用机理及超欠挖控制标准 |
2.1 光面爆破简介 |
2.2 光面爆破作用机理 |
2.2.1 应力波叠加破坏理论 |
2.2.2 爆生气体压碎破坏理论 |
2.2.3 应力波与爆生气体综合作用理论 |
2.3 光面爆破设计参数 |
2.3.1 周边炮孔设计参数 |
2.3.2 炸药品种的选择 |
2.3.3 装药结构 |
2.3.4 炮孔堵塞 |
2.4 隧道光面爆破开挖控制标准 |
2.4.1 超欠挖控制标准 |
2.4.2 光面爆破参数控制标准 |
3.围岩节理对光面爆破超欠挖的影响研究及数值模拟 |
3.1 有限元基本理论概述及ANSYS/LS-DYNA简介 |
3.1.1 有限元分析的基本理论及爆破数值模拟的必要性 |
3.1.2 ANSYS/LS-DYNA简介 |
3.1.3 模型边界设定及材料模型的选取 |
3.1.4 模拟算法的选取 |
3.2 无节理岩体隧道光面爆破模拟 |
3.2.1 依托工程介绍 |
3.2.2 隧道有限元模型的建立 |
3.2.3 无节理岩体隧道光面爆破过程模拟 |
3.2.4 无节理岩体隧道光面爆破模拟结果分析 |
3.3 围岩节理产状对隧道光面爆破超欠挖的影响研究 |
3.3.1 节理产状对隧道超欠挖形成的机理研究 |
3.3.2 节理产状对爆破效果影响的现场试验研究 |
3.3.3 有限元模型的建立 |
3.3.4 不同节理产状岩体爆破过程模拟 |
3.3.5 模拟结果分析及结论 |
3.4 围岩节理强度和宽度对隧道光面爆破超欠挖的影响研究 |
3.4.1 节理强度和宽度对隧道超欠挖形成的机理研究 |
3.4.2 节理强度和宽度对爆破效果影响的模型试验研究 |
3.4.3 有限元模型的建立 |
3.4.4 不同节理强度和宽度对爆破效果的影响模拟 |
3.4.5 模拟结果分析及结论 |
3.5 本章小结 |
4.风动凿岩机及凿岩台车对光面爆破超欠挖的影响研究 |
4.1 我国隧道凿岩设备的发展 |
4.2 风动凿岩机简介及钻孔优缺点 |
4.2.1 风动凿岩机的构造及动作原理 |
4.2.2 风动凿岩机钻孔的优缺点及对超欠挖的影响 |
4.3 凿岩台车简介及钻孔优缺点 |
4.3.1 三臂凿岩台车的构造以及工作原理 |
4.3.2 凿岩台车钻孔的优缺点及对超欠挖的影响 |
4.4 凿岩台车和风动凿岩机经济性对比 |
4.5 严格控制钻孔精度以减少隧道超欠挖 |
4.5.1 钢拱架限制下提高钻孔精度的措施 |
4.5.2 操作空间限制下提高钻孔精度的措施 |
4.6 本章小结 |
5.引起光面爆破超欠挖的其他重要原因及控制措施 |
5.1 引言 |
5.2 周边孔间距对超欠挖的影响研究及数值模拟 |
5.2.1 周边孔间距的确定方法 |
5.2.2 周边孔间距对爆破效果影响的试验研究 |
5.2.3 有限元模型的建立 |
5.2.4 不同周边孔间距爆破过程模拟及分析 |
5.3 布置空孔对隧道超欠挖的影响研究及数值模拟 |
5.3.1 光面爆破中空孔的作用机理及布设方法 |
5.3.2 布置空孔对爆破效果影响的试验研究 |
5.3.3 有限元模型的建立 |
5.3.4 空孔对光面爆破成型的数值模拟及分析 |
5.4 装药不耦合系数对超欠挖的影响研究及数值模拟 |
5.4.1 装药不耦合系数的确定方法 |
5.4.2 装药不耦合系数对爆破效果影响的试验研究 |
5.4.3 有限元模型的建立 |
5.4.4 不同轴向不耦合系数爆破过程模拟及分析 |
5.5 测量放线对超欠挖的影响及控制措施 |
5.6 施工组织管理对超欠挖的影响及控制措施 |
5.7 本章小结 |
6.结论及展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
附录 |
作者简介以及攻读硕士期间取得的研究成果 |
学位论文数据集 |
(6)阳煤五矿小断面岩石巷道钻爆法掘进技术研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 研究内容及技术路线 |
2 试验巷道围岩力学参数测试及分析 |
2.1 采样布置及采样要求 |
2.2 试件规格及实验设备 |
2.3 岩石单轴压缩实验测试 |
2.4 岩石单轴抗拉强度测试 |
2.5 岩石三轴压缩实验测试 |
2.6 岩石动态断裂特性测试 |
2.7 本章小结 |
3 基于数值模拟的掏槽方式选择研究 |
3.1 二维平面掏槽爆破数值模拟参数 |
3.2 楔形掏槽数值模拟 |
3.3 楔直复合掏槽数值模拟 |
3.4 双楔形掏槽数值模拟 |
3.5 数值模拟结果分析 |
3.6 本章小结 |
4 阳煤五矿8504高抽巷爆破及支护方案优化 |
4.1 原爆破方案及爆破效果评价 |
4.2 爆破方案优化 |
4.3 巷道支护参数研究 |
4.4 本章小结 |
5 工程运用与实践 |
5.1 掏槽及爆破技术应用效果 |
5.2 优化后支护效果 |
5.3 巷道掘进工艺及组织优化 |
5.4 本章小结 |
6 结论与展望 |
6.1 结论 |
6.2 不足与展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(7)寺河矿覆岩定向水力压裂控制地表沉陷范围研究(论文提纲范文)
致谢 |
摘要 |
Abstract |
1 绪论 |
1.1 选题的背景及意义 |
1.2 国内外研究现状 |
1.2.1 矿山开采沉陷研究现状 |
1.2.2 建筑物下开采研究现状 |
1.2.3 煤矿水力压裂技术研究现状 |
1.3 研究内容和方法 |
1.4 技术路线 |
2 寺河矿地质采矿条件分析及地表沉陷预计 |
2.1 矿井概述 |
2.2 5304工作面开采技术条件 |
2.2.1 5304工作面概述 |
2.2.2 5304工作面地质采矿条件 |
2.3 地表建筑物现状 |
2.4 工作面开采引起的地表移动变形预计 |
2.5 本章小结 |
3 煤层开采岩层移动及地表沉陷规律分析 |
3.1 煤层开采覆岩移动的分带与分区 |
3.1.1 工作面垂直方向上的分带 |
3.1.2 工作面推进方向上的分区 |
3.2 采动影响下岩体移动和变形的断层效应 |
3.2.1 断层对覆岩移动及地表沉陷的控制作用 |
3.2.2 断层围岩结构滑移受力分析 |
3.2.3 大倾角断层覆岩结构演化规律的试验验证 |
3.3 构造弱面对覆岩移动及地表沉陷规律的影响 |
3.3.1 覆岩移动的分区特征 |
3.3.2 构造弱面影响下覆岩移动的分区特征 |
3.4 本章小结 |
4 覆岩弱面对地表沉陷规律影响数值模拟分析 |
4.1 数值模拟软件简介 |
4.2 数值模拟模型的建立 |
4.3 覆岩弱面高度对地表沉陷的影响规律 |
4.3.1 不同高度弱面模型建立 |
4.3.2 覆岩及地表的竖直位移变形特征 |
4.4 覆岩弱面角度对地表沉陷的影响规律 |
4.4.1 不同角度弱面模型建立 |
4.4.2 覆岩及地表的竖直位移变形特征 |
4.5 本章小结 |
5 井下定向水力压裂控制地表沉陷范围现场试验 |
5.1 试验地点与钻孔布置 |
5.2 试验机具与设备 |
5.3 定向水力压裂工艺与过程 |
5.4 本章小结 |
6 地表移动观测及试验效果分析 |
6.1 地表移动观测站设计 |
6.1.1 观测站设计原则 |
6.1.2 观测线设置及现场观测 |
6.2 观测数据分析 |
6.3 试验效果分析 |
6.4 本章小结 |
7 结论及展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(8)煤系地层隧道开挖控制爆破技术研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 问题的提出与研究意义 |
1.2 国内外研究现状 |
1.2.1 煤系地层环境中掏槽技术 |
1.2.2 煤系地层环境中光面爆破技术 |
1.2.3 煤系地层隧道石门揭煤防突控制爆破方法 |
1.2.4 爆破振动对煤层及顶底板的影响 |
1.3 研究内容及技术路线 |
1.3.1 主要研究内容 |
1.3.2 研究的技术路线 |
第2章 煤系地层煤岩爆破破坏理论与石门突出机理 |
2.1 煤岩体爆破破坏过程 |
2.1.1 岩石爆破本构模型 |
2.1.2 岩体爆破破碎机理 |
2.1.3 煤体爆破破碎机理 |
2.2 瓦斯对煤体力学性质的影响 |
2.2.1 吸附态瓦斯对煤体力学性质影响 |
2.2.2 游离态瓦斯对煤体力学性质影响 |
2.2.3 煤体爆破裂隙尖端应力 |
2.3 爆炸载荷作用下煤岩体动力学特性 |
2.3.1 煤岩体动载荷加载应变率 |
2.3.2 应变率下煤岩体动态力学性质 |
2.4 煤岩体内粉碎区与裂隙区分布规律 |
2.4.1 煤岩体内爆破弹性纵波波速 |
2.4.2 柱状装药爆炸应力载荷 |
2.4.3 爆炸载荷作用下煤岩体破坏准则 |
2.4.4 煤岩体中爆破粉碎区与裂隙区分布规律 |
2.5 爆破激发石门揭煤突出机理 |
2.5.1 爆破振动效应形成过程 |
2.5.2 煤与瓦斯突出的发生条件 |
2.5.3 爆破扰动激发石门揭煤突出机理 |
2.6 本章小结 |
第3章 圭嘎拉隧道穿煤系地层段控制爆破技术研究 |
3.1 LS-DYNA有限元应用程序 |
3.1.1 LS-DYNA程序功能简介 |
3.1.2 LS-DYNA程序动力学求解基础 |
3.2 材料模型与参数 |
3.2.1 煤岩体材料模型与参数 |
3.2.2 粘土炮泥与水炮泥材料模型与参数 |
3.2.3 煤矿三级许用炸药材料模型与参数 |
3.2.4 空气材料模型与参数 |
3.3 隧道穿越煤系地层段掘进爆破参数 |
3.3.1 圭嘎拉隧道工程概况 |
3.3.2 隧道穿煤段开挖方案 |
3.3.3 隧道穿煤段爆破器材选择 |
3.3.4 隧道穿煤段掘进爆破参数 |
3.4 煤系地层隧道穿煤段掏槽形式及参数优化 |
3.4.1 揭煤前全岩断面爆破掏槽优化设计 |
3.4.2 石门揭煤断面爆破掏槽优化设计 |
3.5 煤系地层隧道穿煤段周边眼爆破参数设计及优化 |
3.5.1 全岩断面周边控制爆破参数设计 |
3.5.2 半煤岩与全煤层断面周边控制爆破参数设计 |
3.6 本章小结 |
第4章 石门揭煤爆破煤层及其顶底板与隧道衬砌减震技术研究 |
4.1 预留岩柱爆破损伤范围及其安全厚度 |
4.1.1 预留岩柱爆破损伤范围 |
4.1.2 地应力与煤层瓦斯压力作用下最小预留岩柱厚度 |
4.1.3 不同煤层倾角预留安全岩柱厚度 |
4.2 不同煤层倾角石门揭煤爆破煤层与顶底板振动控制 |
4.2.1 急倾斜煤层石门揭煤爆破振动控制 |
4.2.2 倾斜煤层石门揭煤爆破振动控制 |
4.2.3 缓倾斜煤层石门揭煤爆破振动控制 |
4.2.4 煤层倾角对煤层及其顶底板爆破动力响应的影响 |
4.3 揭穿煤层后隧道衬砌结构爆破振动控制 |
4.3.1 衬砌材料本构模型与参数 |
4.3.2 揭穿煤层后隧道衬砌煤层段爆破振动控制 |
4.4 本章小结 |
第5章 煤系地层隧道穿煤段现场爆破试验与振动特性研究 |
5.1 隧道穿煤段控制爆破方案孔网参数 |
5.1.1 全岩断面爆破孔网参数 |
5.1.2 石门揭煤断面爆破孔网参数 |
5.1.3 半煤岩与全煤层断面爆破孔网参数 |
5.2 隧道穿煤段现场爆破试验与振动监测 |
5.2.1 全岩断面现场爆破试验 |
5.2.2 爆破振动监测系统与测点布置 |
5.2.3 爆破振动监测数据回归分析 |
5.3 隧道穿煤段爆破地震波振动特性分析 |
5.3.1 爆破地震波典型波形时域分析 |
5.3.2 爆破地震波典型波形频谱分析 |
5.4 本章小结 |
第6章 结论与展望 |
6.1 结论 |
6.2 创新点 |
6.3 展望 |
参考文献 |
致谢 |
攻读硕士期间发表论文及科研情况 |
(9)采动煤岩体结构效应及其诱冲机制研究与实践(论文提纲范文)
摘要 |
abstract |
1 绪论 |
1.1 选题背景及意义 |
1.1.1 选题背景 |
1.1.2 选题意义 |
1.2 国内外研究现状 |
1.2.1 冲击地压基本理论 |
1.2.2 结构因素与冲击地压机理研究 |
1.2.3 冲击地压防控技术 |
1.3 主要研究内容 |
1.4 研究方法及技术路线 |
2 国内冲击地压灾害分布、特征及类型研究 |
2.1 冲击地压灾害的分布 |
2.1.1 我国冲击地压矿井的分布情况 |
2.1.2 采深对冲击地压灾害影响 |
2.2 冲击地压灾害特征 |
2.2.1 十二五冲击地压灾害统计分析 |
2.2.2 冲击地压灾害典型特征 |
2.3 冲击地压灾害的分类 |
2.4 考虑结构效应的冲击地压分类研究 |
2.4.1 冲击地压类别 |
2.4.2 典型冲击地压案例分析 |
2.5 本章小结 |
3 实验室尺度下煤岩体结构分析及其力学行为 |
3.1 实验室尺度下煤岩体细观裂隙识别 |
3.1.1 煤岩力学性质与冲击倾向性 |
3.1.2 实验室尺度原生裂隙识别 |
3.2 含主控层理煤岩体结构演化及力学行为 |
3.2.1 试验方案 |
3.2.2 层理煤岩体破坏特征分析 |
3.2.3 层理煤样波速与冲击倾向性关系 |
3.3 本章小结 |
4 厚层沉积煤岩层结构失稳诱滑机理分析 |
4.1 非稳定摩擦滑动模型思想 |
4.1.1 粘滑-弹簧滑块模型 |
4.1.2 超低摩擦-动力块模型 |
4.2 简支梁结构煤岩体失稳的超低摩擦效应 |
4.3 厚层煤岩开采环境下煤岩应力演化规律试验 |
4.3.1 相似模拟实验方案 |
4.3.2 正常开采覆岩裂隙场、位移场与应力场演化规律 |
4.3.3 预裂顶板开采覆岩裂隙场、位移场与应力场演化规律 |
4.4 本章小结 |
5 厚层坚硬顶板结构切顶改造技术实践 |
5.1 三维地应力场反演分析 |
5.1.1 三维地应力场反演数值模型 |
5.1.2 反演过程及效果评价 |
5.1.3 反演应力场特征分析 |
5.2 3014 工作面顶板改造技术 |
5.2.1 3104 综采工作面概况 |
5.2.2 水力压裂技术 |
5.2.3 3104 综采工作面切顶技术实践 |
5.3 水力压裂效果分析 |
5.3.1 工作面矿压观测 |
5.3.2 工作面CO浓度变化分析 |
5.3.3 该地区其他未切顶工作面来压分析 |
5.3.4 水力压裂切顶效果分析 |
5.4 本章小结 |
6 结论 |
6.1 主要结论 |
6.2 本文创新点 |
6.3 展望与不足 |
参考文献 |
致谢 |
作者简介 |
(10)采动巷道冲击地压力构协同防控技术研究(论文提纲范文)
摘要 |
Abstract |
1 引言 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.2.1 采动巷道形成机制及顶板破断特征研究现状 |
1.2.2 采动巷道围岩控制理论与技术研究现状 |
1.2.3 冲击地压机理及防治技术研究现状 |
1.3 研究内容与研究方法 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.4 技术路线 |
2 典型厚硬顶板采动巷道矿压显现特征及围岩稳定性评价 |
2.1 典型厚硬岩层采动巷道矿压显现特征 |
2.1.1 采动巷道围岩强动压显现特征 |
2.1.2 采动巷道围岩松动圈发育特征 |
2.1.3 采动巷道围岩应力分布特征 |
2.1.4 采动巷道区段煤柱应力分布特征 |
2.2 上覆厚硬顶板采动巷道围岩结构及力学参数特征 |
2.2.1 顶板岩层结构特征及力学参数 |
2.2.2 煤层结构特征及力学参数 |
2.2.3 底板岩层结构特征及力学参数 |
2.3 上覆厚硬岩层采动巷道围岩稳定性评价 |
2.3.1 采动巷道稳定性影响因素分析 |
2.3.2 采动巷道稳定性综合评价 |
2.4 本章小结 |
3 采动巷道厚硬顶板侧向不同断裂位置对区段煤柱受力特征试验研究 |
3.1 现场采样及试样加工制备 |
3.1.1 现场采用 |
3.1.2 试样加工制备 |
3.2 试样装置及试验方案设计 |
3.2.1 试样加载装置设计加工 |
3.2.2 试验方案设计 |
3.3 试验结果分析 |
3.3.1 应变特征分析 |
3.3.2 高位顶板回转倾角分析 |
3.3.3 煤柱受力状态分析 |
3.4 本章小结 |
4 采动巷道侧向厚硬岩层运动特征及结构破断力学分析 |
4.1 采动巷道上覆厚硬岩层运动特征及来压机理分析 |
4.1.1 采动巷道低位厚硬岩层结构及运动特征 |
4.1.2 采动巷道高位厚硬岩层结构及运动特征 |
4.1.3 采动巷道上覆厚硬岩层侧向倒直梯形区形成过程 |
4.1.4 采动巷道区段煤柱侧向厚硬岩层倒直梯形区应力传承机制 |
4.2 采动巷道区段煤柱侧向厚硬岩层结构破断形式 |
4.2.1 高位厚硬岩层侧向结构破断分析 |
4.2.2 低位厚硬岩层侧向结构破断分析 |
4.2.3 采空区顶板断裂形式及煤柱受力分析 |
4.3 采动巷道侧向厚硬岩层结构破断对区段煤柱稳定性影响及卸压判据 |
4.3.1 采动巷道区段煤柱侧向厚硬岩层结构破断模型 |
4.3.2 不同破断结构形式下的区段煤柱极限强度计算 |
4.3.3 基于煤柱稳定性的最优侧向破断位态分析与及其卸压判据 |
4.4 本章小结 |
5 采动巷道冲击地压力构协同防控技术研究 |
5.1 采动巷道侧向顶板断裂结构优化与围岩应力控制 |
5.1.1 采动巷道侧向顶板断裂结构优化与围岩应力控制 |
5.1.2 采动巷道结构优化防冲原则 |
5.1.3 采动巷道应力控制防冲原则 |
5.2 采动巷道侧向顶板断裂结构控制技术 |
5.2.1 深孔顶板定向水压致裂力构防控技术 |
5.2.2 深孔顶板预裂爆破力构控制技术 |
5.3 采动巷道围岩应力优化防控技术 |
5.3.1 采动巷道吸能让压卸支耦合支护技术 |
5.3.2 深孔断底爆破应力阻隔技术 |
5.4 本章小结 |
6 采动巷道冲击地压力构协同防控工程实践 |
6.1 采动巷道围岩应力特征及侧向厚硬岩层破断位置实测 |
6.1.1 311103工作面回风顺槽概况 |
6.1.2 巴彦高勒煤矿11盘区地应力实测 |
6.1.3 311103工作面应力状态实测 |
6.1.4 采动巷道侧向厚硬岩层破断位置实测 |
6.2 深孔顶板预裂爆破防冲技术实践 |
6.2.1 深孔顶板预裂爆破参数设计 |
6.2.2 深孔顶板预裂爆破防冲效果检验 |
6.3 深孔顶板定向水压致裂防冲技术实践 |
6.3.1 深孔顶板定向水压致裂参数设计 |
6.3.2 深孔顶板定向水压致裂防冲效果检验 |
6.4 深孔顶板预裂爆破与定向水压致裂对比分析 |
6.5 本章小结 |
7 结论与展望 |
7.1 主要研究结论 |
7.2 创新点 |
7.3 展望 |
参考文献 |
致谢 |
作者简介 |
四、掘进工作面岩体裂隙弱面对掏槽孔爆破的影响与弱面的利用(论文参考文献)
- [1]高效消焰剂型安全高威力水胶炸药爆炸性能及破岩机制研究[D]. 刘伟. 安徽理工大学, 2021(02)
- [2]动载作用下损伤砂岩的力学特性与破裂特征[D]. 郑强强. 安徽理工大学, 2021(02)
- [3]坚硬顶板采场定向造缝覆岩三维破断特征及应力场演化规律[D]. 邰阳. 中国矿业大学, 2021(02)
- [4]爆破扰动正断层区域煤岩破坏特征及其对瓦斯突出的影响[D]. 乔国栋. 安徽理工大学, 2020(07)
- [5]隧道光面爆破施工超欠挖影响因素分析及控制技术研究[D]. 张旭. 北京交通大学, 2020(03)
- [6]阳煤五矿小断面岩石巷道钻爆法掘进技术研究[D]. 李甲. 中国矿业大学, 2020(03)
- [7]寺河矿覆岩定向水力压裂控制地表沉陷范围研究[D]. 冯占杰. 河南理工大学, 2020(01)
- [8]煤系地层隧道开挖控制爆破技术研究[D]. 周圣国. 武汉理工大学, 2020(08)
- [9]采动煤岩体结构效应及其诱冲机制研究与实践[D]. 李磊. 中国矿业大学(北京), 2020(01)
- [10]采动巷道冲击地压力构协同防控技术研究[D]. 赵善坤. 中国矿业大学(北京), 2020(04)